Elasticsearch 之(12)query string的分词,修改分词器以及自定义分词器
query string分词
query string必须以和index建立时相同的analyzer进行分词
query string对exact value和full text的区别对待 (第10节中详细阐述过)
date:exact value
_all:full text
比如我们有一个document,其中有一个field,包含的value是:hello you and me,建立倒排索引
我们要搜索这个document对应的index,搜索文本是hell me,这个搜索文本就是query string
query string,默认情况下,es会使用它对应的field建立倒排索引时相同的分词器去进行分词,分词和normalization,只有这样,才能实现正确的搜索
我们建立倒排索引的时候,将dogs --> dog,结果你搜索的时候,还是一个dogs,那不就搜索不到了吗?所以搜索的时候,那个dogs也必须变成dog才行。才能搜索到。
知识点:不同类型的field,可能有的就是full text,有的就是exact value
post_date,date:exact value
_all:full text,分词,normalization
分词器使用
GET /_search?q=2017
搜索的是_all field,document所有的field都会拼接成一个大串,进行分词
2017-01-02 my second article this is my second article in this website 11400
doc1 doc2 doc3
2017 * * *
01 *
02 *
03 *
_all,2017,自然会搜索到3个docuemnt
GET /_search?q=2017-01-01
_all,2017-01-01,query string会用跟建立倒排索引一样的分词器去进行分词
2017
01
01
GET /_search?q=post_date:2017-01-01
date,会作为exact value去建立索引
doc1 doc2 doc3
2017-01-01 *
2017-01-02 *
2017-01-03 *
post_date:2017-01-01,2017-01-01,doc1一条document
GET /_search?q=post_date:2017,这个在这里不讲解,因为是es 5.2以后做的一个优化
测试分词器
GET /_analyze { "analyzer": "standard", "text": "Text to analyze" }
(1)往es里面直接插入数据,es会自动建立索引,同时建立type以及对应的mapping
(2)mapping中就自动定义了每个field的数据类型
(3)不同的数据类型(比如说text和date),可能有的是exact value,有的是full text
(4)exact value,在建立倒排索引的时候,分词的时候,是将整个值一起作为一个关键词建立到倒排索引中的;full text,会经历各种各样的处理,分词,normaliztion(时态转换,同义词转换,大小写转换),才会建立到倒排索引中
(5)同时呢,exact value和full text类型的field就决定了,在一个搜索过来的时候,对exact value field或者是full text field进行搜索的行为也是不一样的,会跟建立倒排索引的行为保持一致;比如说exact value搜索的时候,就是直接按照整个值进行匹配,full text query string,也会进行分词和normalization再去倒排索引中去搜索
(6)可以用es的dynamic mapping,让其自动建立mapping,包括自动设置数据类型;也可以提前手动创建index和type的mapping,自己对各个field进行设置,包括数据类型,包括索引行为,包括分词器,等等
mapping,就是index的type的元数据,每个type都有一个自己的mapping,决定了数据类型,建立倒排索引的行为,还有进行搜索的行为
正排索引
搜索的时候,要依靠倒排索引;排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values
在建立索引的时候,一方面会建立倒排索引,以供搜索用;一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用
doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高;如果内存不足够,os会将其写入磁盘上
doc1: hello world you and me
doc2: hi, world, how are you
word doc1 doc2
hello *
world * *
you * *
and *
me *
hi *
how *
are *
hello you --> hello, you
hello --> doc1
you --> doc1,doc2
doc1: hello world you and me
doc2: hi, world, how are you
sort by age
doc1: { "name": "jack", "age": 27 }
doc2: { "name": "tom", "age": 30 }
document name age
doc1 jack 27
doc2 tom 30
默认的分词器
standard
standard tokenizer:以单词边界进行切分
standard token filter:什么都不做
lowercase token filter:将所有字母转换为小写
stop token filer(默认被禁用):移除停用词,比如a the it等等
修改分词器的设置
启用english停用词token filter
PUT /my_index { "settings": { "analysis": { "analyzer": { "es_std": { "type": "standard", "stopwords": "_english_" } } } } } GET /my_index/_analyze { "analyzer": "standard", "text": "a dog is in the house" } GET /my_index/_analyze { "analyzer": "es_std", "text":"a dog is in the house" }
定制化自己的分词器
PUT /my_index { "settings": { "analysis": { "char_filter": { "&_to_and": { "type": "mapping", "mappings": ["&=> and"] } }, "filter": { "my_stopwords": { "type": "stop", "stopwords": ["the", "a"] } }, "analyzer": { "my_analyzer": { "type": "custom", "char_filter": ["html_strip", "&_to_and"], "tokenizer": "standard", "filter": ["lowercase", "my_stopwords"] } } } } } GET /my_index/_analyze { "text": "tom&jerry are a friend in the house, <a>, HAHA!!", "analyzer": "my_analyzer" } PUT /my_index/_mapping/my_type { "properties": { "content": { "type": "text", "analyzer": "my_analyzer" } } }