Elasticsearch 之(20)proximity match 近似匹配
1、什么是近似匹配
两个句子
java is my favourite programming language, and I also think spark is a very good big data system.
java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.
match query,搜索java spark
{ "match": { "content": "java spark" } }
match query,只能搜索到包含java和spark的document,但是不知道java和spark是不是离的很近
包含java或包含spark,或包含java和spark的doc,都会被返回回来。我们其实并不知道哪个doc,java和spark距离的比较近。如果我们就是希望搜索java spark,中间不能插入任何其他的字符,那这个时候match去做全文检索,能搞定我们的需求吗?答案是,搞不定。
如果我们要尽量让java和spark离的很近的document优先返回,要给它一个更高的relevance score,这就涉及到了proximity match,近似匹配
如果说,要实现两个需求:
1、java spark,就靠在一起,中间不能插入任何其他字符,就要搜索出来这种doc
2、java spark,但是要求,java和spark两个单词靠的越近,doc的分数越高,排名越靠前
要实现上述两个需求,用match做全文检索,是搞不定的,必须得用proximity match,近似匹配
phrase match,proximity match:短语匹配,近似匹配
这一讲,要学习的是phrase match,就是仅仅搜索出java和spark靠在一起的那些doc,比如有个doc,是java use'd spark,不行。必须是比如java spark are very good friends,是可以搜索出来的。
phrase match,就是要去将多个term作为一个短语,一起去搜索,只有包含这个短语的doc才会作为结果返回。不像是match,java spark,java的doc也会返回,spark的doc也会返回。
2、match_phrase
GET /forum/article/_search { "query": { "match": { "content": "java spark" } } }
单单包含java的doc也返回了,不是我们想要的结果
POST /forum/article/5/_update { "doc": { "content": "spark is best big data solution based on scala ,an programming language similar to java spark" } }
将一个doc的content设置为恰巧包含java spark这个短语
match_phrase语法
GET /forum/article/_search { "query": { "match_phrase": { "content": "java spark" } } }
成功了,只有包含java spark这个短语的doc才返回了,只包含java的doc不会返回
3、term position
hello world, java spark doc1
hi, spark java doc2
hello doc1(0)
wolrd doc1(1)
java doc1(2) doc2(2)
spark doc1(3) doc2(1)
了解什么是分词后的position
GET _analyze { "text": "hello world, java spark", "analyzer": "standard" } { "tokens": [ { "token": "hello", "start_offset": 0, "end_offset": 5, "type": "<ALPHANUM>", "position": 0 }, { "token": "world", "start_offset": 6, "end_offset": 11, "type": "<ALPHANUM>", "position": 1 }, { "token": "java", "start_offset": 13, "end_offset": 17, "type": "<ALPHANUM>", "position": 2 }, { "token": "spark", "start_offset": 18, "end_offset": 23, "type": "<ALPHANUM>", "position": 3 } ] }
4、match_phrase的基本原理
索引中的position,match_phrase
hello world, java spark doc1
hi, spark java doc2
hello doc1(0)
wolrd doc1(1)
java doc1(2) doc2(2)
spark doc1(3) doc2(1)
java spark --> match phrase
java spark --> java和spark
java --> doc1(2) doc2(2)
spark --> doc1(3) doc2(1)
要找到每个term都在的一个共有的那些doc,就是要求一个doc,必须包含每个term,才能拿出来继续计算
doc1 --> java和spark --> spark position恰巧比java大1 --> java的position是2,spark的position是3,恰好满足条件
doc1符合条件
doc2 --> java和spark --> java position是2,spark position是1,spark position比java position小1,而不是大1 --> 光是position就不满足,那么doc2不匹配
必须理解这块原理!!!!
因为后面的proximity match就是原理跟这个一模一样!!!
slop
GET /forum/article/_search { "query": { "match_phrase": { "title": { "query": "java spark", "slop": 1 } } } }
slop的含义是什么?
query string,搜索文本,中的几个term,要经过几次移动才能与一个document匹配,这个移动的次数,就是slop
实际举例,一个query string经过几次移动之后可以匹配到一个document,然后设置slop
hello world, java is very good, spark is also very good.
java spark,match phrase,搜不到
如果我们指定了slop,那么就允许java spark进行移动,来尝试与doc进行匹配
java is very good spark is
java spark
java --> spark
java --> spark
java --> spark
这里的slop,就是3,因为java spark这个短语,spark移动了3次,就可以跟一个doc匹配上了
slop的含义,不仅仅是说一个query string terms移动几次,跟一个doc匹配上。一个query string terms,最多可以移动几次去尝试跟一个doc匹配上
slop,设置的是3,那么就ok
GET /forum/article/_search { "query": { "match_phrase": { "title": { "query": "java spark", "slop": 3 } } } }
就可以把刚才那个doc匹配上,那个doc会作为结果返回
但是如果slop设置的是2,那么java spark,spark最多只能移动2次,此时跟doc是匹配不上的,那个doc是不会作为结果返回的
验证slop的含义
GET /forum/article/_search { "query": { "match_phrase": { "content": { "query": "spark data", "slop": 3 } } } }
spark is best big data solution based on scala ,an programming language similar to java spark
spark data
--> data
--> data
spark --> data
GET /forum/article/_search { "query": { "match_phrase": { "content": { "query": "data spark", "slop": 5 } } } }
spark is best big data
data spark
--> data/spark
spark <--data
spark --> data
spark --> data
spark --> data
slop搜索下,关键词离的越近,relevance score就会越高
GET /forum/article/_search { "query": { "match_phrase": { "content": { "query": "java best", "slop": 15 } } } } { "took": 3, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 2, "max_score": 0.65380025, "hits": [ { "_index": "forum", "_type": "article", "_id": "2", "_score": 0.65380025, "_source": { "articleID": "KDKE-B-9947-#kL5", "userID": 1, "hidden": false, "postDate": "2017-01-02", "tag": [ "java" ], "tag_cnt": 1, "view_cnt": 50, "title": "this is java blog", "content": "i think java is the best programming language", "sub_title": "learned a lot of course", "author_first_name": "Smith", "author_last_name": "Williams", "new_author_last_name": "Williams", "new_author_first_name": "Smith" } }, { "_index": "forum", "_type": "article", "_id": "5", "_score": 0.07111243, "_source": { "articleID": "DHJK-B-1395-#Ky5", "userID": 3, "hidden": false, "postDate": "2017-03-01", "tag": [ "elasticsearch" ], "tag_cnt": 1, "view_cnt": 10, "title": "this is spark blog", "content": "spark is best big data solution based on scala ,an programming language similar to java spark", "sub_title": "haha, hello world", "author_first_name": "Tonny", "author_last_name": "Peter Smith", "new_author_last_name": "Peter Smith", "new_author_first_name": "Tonny" } } ] } }
其实,加了slop的phrase match,就是proximity match,近似匹配
1、java spark,短语,doc,phrase match
2、java spark,可以有一定的距离,但是靠的越近,越先搜索出来,proximity match
召回率
比如你搜索一个java spark,总共有100个doc,能返回多少个doc作为结果,就是召回率,recall
精准度
比如你搜索一个java spark,能不能尽可能让包含java spark,或者是java和spark离的很近的doc,排在最前面,precision
直接用match_phrase短语搜索,会导致必须所有term都在doc field中出现,而且距离在slop限定范围内,才能匹配上
match phrase,proximity match,要求doc必须包含所有的term,才能作为结果返回;如果某一个doc可能就是有某个term没有包含,那么就无法作为结果返回
java spark --> hello world java --> 就不能返回了
java spark --> hello world, java spark --> 才可以返回
近似匹配的时候,召回率比较低,精准度太高了
但是有时可能我们希望的是匹配到几个term中的部分,就可以作为结果出来,这样可以提高召回率。同时我们也希望用上match_phrase根据距离提升分数的功能,让几个term距离越近分数就越高,优先返回
就是优先满足召回率,意思,java spark,包含java的也返回,包含spark的也返回,包含java和spark的也返回;同时兼顾精准度,就是包含java和spark,同时java和spark离的越近的doc排在最前面
此时可以用bool组合match query和match_phrase query一起,来实现上述效果
GET /forum/article/_search { "query": { "bool": { "must": { "match": { "title": { "query": "java spark" --> java或spark或java spark,java和spark靠前,但是没法区分java和spark的距离,也许java和spark靠的很近,但是没法排在最前面 } } }, "should": { "match_phrase": { --> 在slop以内,如果java spark能匹配上一个doc,那么就会对doc贡献自己的relevance score,如果java和spark靠的越近,那么就分数越高 "title": { "query": "java spark", "slop": 50 } } } } } }对比 match phrase,proximity match查询结果
GET /forum/article/_search { "query": { "bool": { "must": [ { "match": { "content": "java spark" } } ] } } } { "took": 5, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 2, "max_score": 0.68640786, "hits": [ { "_index": "forum", "_type": "article", "_id": "2", "_score": 0.68640786, "_source": { "articleID": "KDKE-B-9947-#kL5", "userID": 1, "hidden": false, "postDate": "2017-01-02", "tag": [ "java" ], "tag_cnt": 1, "view_cnt": 50, "title": "this is java blog", "content": "i think java is the best programming language", "sub_title": "learned a lot of course", "author_first_name": "Smith", "author_last_name": "Williams", "new_author_last_name": "Williams", "new_author_first_name": "Smith", "followers": [ "Tom", "Jack" ] } }, { "_index": "forum", "_type": "article", "_id": "5", "_score": 0.68324494, "_source": { "articleID": "DHJK-B-1395-#Ky5", "userID": 3, "hidden": false, "postDate": "2017-03-01", "tag": [ "elasticsearch" ], "tag_cnt": 1, "view_cnt": 10, "title": "this is spark blog", "content": "spark is best big data solution based on scala ,an programming language similar to java spark", "sub_title": "haha, hello world", "author_first_name": "Tonny", "author_last_name": "Peter Smith", "new_author_last_name": "Peter Smith", "new_author_first_name": "Tonny", "followers": [ "Jack", "Robbin Li" ] } } ] } }
GET /forum/article/_search { "query": { "bool": { "must": [ { "match": { "content": "java spark" } } ], "should": [ { "match_phrase": { "content": { "query": "java spark", "slop": 50 } } } ] } } } { "took": 5, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 2, "max_score": 1.258609, "hits": [ { "_index": "forum", "_type": "article", "_id": "5", "_score": 1.258609, "_source": { "articleID": "DHJK-B-1395-#Ky5", "userID": 3, "hidden": false, "postDate": "2017-03-01", "tag": [ "elasticsearch" ], "tag_cnt": 1, "view_cnt": 10, "title": "this is spark blog", "content": "spark is best big data solution based on scala ,an programming language similar to java spark", "sub_title": "haha, hello world", "author_first_name": "Tonny", "author_last_name": "Peter Smith", "new_author_last_name": "Peter Smith", "new_author_first_name": "Tonny", "followers": [ "Jack", "Robbin Li" ] } }, { "_index": "forum", "_type": "article", "_id": "2", "_score": 0.68640786, "_source": { "articleID": "KDKE-B-9947-#kL5", "userID": 1, "hidden": false, "postDate": "2017-01-02", "tag": [ "java" ], "tag_cnt": 1, "view_cnt": 50, "title": "this is java blog", "content": "i think java is the best programming language", "sub_title": "learned a lot of course", "author_first_name": "Smith", "author_last_name": "Williams", "new_author_last_name": "Williams", "new_author_first_name": "Smith", "followers": [ "Tom", "Jack" ] } } ] } }
match和phrase match(proximity match)区别
match --> 只要简单的匹配到了一个term,就可以理解将term对应的doc作为结果返回,扫描倒排索引,扫描到了就ok
phrase match --> 首先扫描到所有term的doc list; 找到包含所有term的doc list; 然后对每个doc都计算每个term的position,是否符合指定的范围; slop,需要进行复杂的运算,来判断能否通过slop移动,匹配一个doc
match query的性能比phrase match和proximity match(有slop)要高很多。因为后两者都要计算position的距离。
match query比phrase match的性能要高10倍,比proximity match的性能要高20倍。
但是别太担心,因为es的性能一般都在毫秒级别,match query一般就在几毫秒,或者几十毫秒,而phrase match和proximity match的性能在几十毫秒到几百毫秒之间,所以也是可以接受的。
优化proximity match的性能,一般就是减少要进行proximity match搜索的document数量。主要思路就是,用match query先过滤出需要的数据,然后再用proximity match来根据term距离提高doc的分数,同时proximity match只针对每个shard的分数排名前n个doc起作用,来重新调整它们的分数,这个过程称之为rescoring,重计分。因为一般用户会分页查询,只会看到前几页的数据,所以不需要对所有结果进行proximity match操作。
用我们刚才的说法,match + proximity match同时实现召回率和精准度
默认情况下,match也许匹配了1000个doc,proximity match全都需要对每个doc进行一遍运算,判断能否slop移动匹配上,然后去贡献自己的分数
但是很多情况下,match出来也许1000个doc,其实用户大部分情况下是分页查询的,所以可能最多只会看前几页,比如一页是10条,最多也许就看5页,就是50条
proximity match只要对前50个doc进行slop移动去匹配,去贡献自己的分数即可,不需要对全部1000个doc都去进行计算和贡献分数
rescore(重打分)
match:1000个doc,其实这时候每个doc都有一个分数了; proximity match,前50个doc,进行rescore,重打分,即可; 让前50个doc,term举例越近的,排在越前面
GET /forum/article/_search { "query": { "match": { "content": "java spark" } }, "rescore": { "window_size": 50, "query": { "rescore_query": { "match_phrase": { "content": { "query": "java spark", "slop": 50 } } } } } }