Elasticsearch 之(27)cardinality算法之优化内存开销以及HLL算法

1、cardinality语法

es,去重,cartinality metric,对每个bucket中的指定的field进行去重,取去重后的count,类似于count(distcint)
cardinality,count(distinct),5%的错误率,性能在100ms左右

{
  "size" : 0,
  "aggs" : {
      "months" : {
        "date_histogram": {
          "field": "sold_date",
          "interval": "month"
        },
        "aggs": {
          "distinct_colors" : {
              "cardinality" : {
                "field" : "brand"
              }
          }
        }
      }
  }
}
{
  "took": 70,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_sold_date": {
      "buckets": [
        {
          "key_as_string": "2016-05-01T00:00:00.000Z",
          "key": 1462060800000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-06-01T00:00:00.000Z",
          "key": 1464739200000,
          "doc_count": 0,
          "distinct_brand_cnt": {
            "value": 0
          }
        },
        {
          "key_as_string": "2016-07-01T00:00:00.000Z",
          "key": 1467331200000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-08-01T00:00:00.000Z",
          "key": 1470009600000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-09-01T00:00:00.000Z",
          "key": 1472688000000,
          "doc_count": 0,
          "distinct_brand_cnt": {
            "value": 0
          }
        },
        {
          "key_as_string": "2016-10-01T00:00:00.000Z",
          "key": 1475280000000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-11-01T00:00:00.000Z",
          "key": 1477958400000,
          "doc_count": 2,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-12-01T00:00:00.000Z",
          "key": 1480550400000,
          "doc_count": 0,
          "distinct_brand_cnt": {
            "value": 0
          }
        },
        {
          "key_as_string": "2017-01-01T00:00:00.000Z",
          "key": 1483228800000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2017-02-01T00:00:00.000Z",
          "key": 1485907200000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        }
      ]
    }
  }
}

2、precision_threshold优化准确率和内存开销
GET /tvs/sales/_search
{
    "size" : 0,
    "aggs" : {
        "distinct_brand" : {
            "cardinality" : {
              "field" : "brand",
              "precision_threshold" : 100 
            }
        }
    }
}
brand去重,如果brand(品牌)的unique value,在100个以内,小米,长虹,三星,TCL,HTL。。。

在多少个unique value以内,cardinality,几乎保证100%准确
cardinality算法,会占用precision_threshold * 8 byte 内存消耗,100 * 8 = 800个字节
占用内存很小而且unique value如果的确在值以内,那么可以确保100%准确
100,数百万的unique value,错误率在5%以内

precision_threshold,值设置的越大,占用内存越大,可以确保更多unique value的场景下,100%的准确

field,去重,count,这时候,unique value,10000,
precision_threshold=10000,
10000 * 8 = 80000 个byte,
80000 / 1024 ≈ 80KB


3、HyperLogLog++ (HLL)算法性能优化
cardinality底层算法:HLL算法,HLL算法的性能
会对所有的uqniue value取hash值,通过hash值近似去求distcint count,误差

默认情况下,发送一个cardinality请求的时候,会动态地对所有的field value,取hash值; 将取hash值的操作,前移到建立索引的时候

创建索引时, brand field type 增加创建其hash值索引
PUT /tvs/
{
  "mappings": {
    "sales": {
      "properties": {
        "brand": {
          "type": "text",
          "fields": {
            "hash": {
              "type": "murmur3" 
            }
          }
        }
      }
    }
  }
}

根据hash值作引进行cartinality metric

GET /tvs/sales/_search
{
    "size" : 0,
    "aggs" : {
        "distinct_brand" : {
            "cardinality" : {
              "field" : "brand.hash",
              "precision_threshold" : 100 
            }
        }
    }
}



posted @ 2018-05-28 10:25  91vincent  阅读(730)  评论(0编辑  收藏  举报