Elasticsearch 之(31)fielddata原理初探
1、《Elasticsearch 之(6)kibana嵌套聚合,下钻分析,聚合分析》提到 对于分词的field执行aggregation,发现报错
GET /test_index/test_type/_search { "aggs": { "group_by_test_field": { "terms": { "field": "test_field" } } } }
{ "error": { "root_cause": [ { "type": "illegal_argument_exception", "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [test_field] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory." } ], "type": "search_phase_execution_exception", "reason": "all shards failed", "phase": "query", "grouped": true, "failed_shards": [ { "shard": 0, "index": "test_index", "node": "4onsTYVZTjGvIj9_spWz2w", "reason": { "type": "illegal_argument_exception", "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [test_field] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory." } } ], "caused_by": { "type": "illegal_argument_exception", "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [test_field] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory." } }, "status": 400 }
对分词的field,直接执行聚合操作,会报错,大概意思是说,你必须要打开fielddata,然后将正排索引数据加载到内存中,才可以对分词的field执行聚合操作,而且会消耗很大的内存
2、如果要对分词的field执行聚合操作,必须将fielddata设置为true
POST /test_index/_mapping/test_type { "properties": { "test_field": { "type": "text", "fielddata": true } } } { "test_index": { "mappings": { "test_type": { "properties": { "test_field": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } }, "fielddata": true } } } } } }
GET /test_index/test_type/_search { "size": 0, "aggs": { "group_by_test_field": { "terms": { "field": "test_field" } } } } { "took": 23, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 2, "max_score": 0, "hits": [] }, "aggregations": { "group_by_test_field": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "test", "doc_count": 2 } ] } } }
3、使用内置field不分词,对string field进行聚合
如果对不分词的field执行聚合操作,直接就可以执行,不需要设置fieldata=true(keyword在256字符内忽略分词)
GET /test_index/test_type/_search { "size": 0, "aggs": { "group_by_test_field": { "terms": { "field": "test_field.keyword" } } } }
{ "took": 3, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 2, "max_score": 0, "hits": [] }, "aggregations": { "group_by_test_field": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "test", "doc_count": 2 } ] } } }
4、分词field+fielddata的工作原理
doc value --> 不分词的所有field,可以执行聚合操作 --> 如果你的某个field不分词,那么在index-time,就会自动生成doc value --> 针对这些不分词的field执行聚合操作的时候,自动就会用doc value来执行
分词field,是没有doc value的。在index-time,如果某个field是分词的,那么是不会给它建立doc value正排索引的,因为分词后,占用的空间过于大,所以默认是不支持分词field进行聚合的
分词field默认没有doc value,所以直接对分词field执行聚合操作,是会报错的
对于分词field,必须打开和使用fielddata,完全存在于纯内存中,结构和doc value类似。如果是ngram或者是大量term,那么必将占用大量的内存。
如果一定要对分词的field执行聚合,那么必须将fielddata=true,然后es就会在执行聚合操作的时候,现场将field对应的数据,建立一份fielddata正排索引,fielddata正排索引的结构跟doc value是类似的,但是只会讲fielddata正排索引加载到内存中来,然后基于内存中的fielddata正排索引执行分词field的聚合操作
如果直接对分词field执行聚合,报错,才会让我们开启fielddata=true,告诉我们,会将fielddata uninverted index,正排索引,加载到内存,会耗费内存空间
为什么fielddata必须在内存?因为大家自己思考一下,分词的字符串,需要按照term进行聚合,需要执行更加复杂的算法和操作,如果基于磁盘和os cache,那么性能会很差