Elasticsearch 之(33)document数据建模实战_文件搜索_嵌套关系_父子/祖孙关系数据

前言
《Elasticsearch 之(2)Elasticsearch核心概念》中简单提到了document 和 数据库db 数据模型的差别,本文将详细讲述集中常用的数据模型。文件搜索数据建模,对类似文件系统这种的有多层级关系的数据进行建模

1、文件系统数据构造
PUT /fs
{
  "settings": {
    "analysis": {
      "analyzer": {
        "paths": { 
          "tokenizer": "path_hierarchy"
        }
      }
    }
  }
}
path_hierarchy tokenizer讲解
/a/b/c/d --> path_hierarchy -> /a/b/c/d,     /a/b/c,     /a/b, /a

fs: filesystem
PUT /fs/_mapping/file
{
  "properties": {
    "name": { 
      "type":  "keyword"
    },
    "path": { 
      "type":  "keyword",
      "fields": {
        "tree": { 
          "type":     "text",
          "analyzer": "paths"
        }
      }
    }
  }
}
PUT /fs/file/1
{
  "name":     "README.txt", 
  "path":     "/workspace/projects/helloworld", 
  "contents": "这是我的第一个elasticsearch程序"
}
2、对文件系统执行搜索

文件搜索需求:查找一份,内容包括elasticsearch,在/workspace/projects/hellworld这个目录下的文件
GET /fs/file/_search 
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "contents": "elasticsearch"
          }
        },
        {
          "constant_score": {
            "filter": {
              "term": {
                "path": "/workspace/projects/helloworld"
              }
            }
          }
        }
      ]
    }
  }
}
{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1.284885,
    "hits": [
      {
        "_index": "fs",
        "_type": "file",
        "_id": "1",
        "_score": 1.284885,
        "_source": {
          "name": "README.txt",
          "path": "/workspace/projects/helloworld",
          "contents": "这是我的第一个elasticsearch程序"
        }
      }
    ]
  }
}
搜索需求2:搜索/workspace目录下,内容包含elasticsearch的所有的文件

/workspace/projects/helloworld doc1
/workspace/projects          doc1
/workspace                  doc1
GET /fs/file/_search 
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "contents": "elasticsearch"
          }
        },
        {
          "constant_score": {
            "filter": {
              "term": {
                "path.tree": "/workspace"
              }
            }
          }
        }
      ]
    }
  }
}


嵌套关系
1、做一个实验,引出来为什么需要nested object

冗余数据方式的来建模,其实用的就是object类型,我们这里又要引入一种新的object类型,nested object类型

博客,评论,做的这种数据模型
PUT /website/blogs/6
{
  "title": "花无缺发表的一篇帖子",
  "content":  "我是花无缺,大家要不要考虑一下投资房产和买股票的事情啊。。。",
  "tags":  [ "投资", "理财" ],
  "comments": [ 
    {
      "name":    "小鱼儿",
      "comment": "什么股票啊?推荐一下呗",
      "age":     28,
      "stars":   4,
      "date":    "2016-09-01"
    },
    {
      "name":    "黄药师",
      "comment": "我喜欢投资房产,风,险大收益也大",
      "age":     31,
      "stars":   5,
      "date":    "2016-10-22"
    }
  ]
}

被年龄是28岁的黄药师评论过的博客,搜索
GET /website/blogs/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "comments.name": "黄药师" }},
        { "match": { "comments.age":  28      }} 
      ]
    }
  }
}
{
  "took": 102,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1.8022683,
    "hits": [
      {
        "_index": "website",
        "_type": "blogs",
        "_id": "6",
        "_score": 1.8022683,
        "_source": {
          "title": "花无缺发表的一篇帖子",
          "content": "我是花无缺,大家要不要考虑一下投资房产和买股票的事情啊。。。",
          "tags": [
            "投资",
            "理财"
          ],
          "comments": [
            {
              "name": "小鱼儿",
              "comment": "什么股票啊?推荐一下呗",
              "age": 28,
              "stars": 4,
              "date": "2016-09-01"
            },
            {
              "name": "黄药师",
              "comment": "我喜欢投资房产,风,险大收益也大",
              "age": 31,
              "stars": 5,
              "date": "2016-10-22"
            }
          ]
        }
      }
    ]
  }
}
结果是。。。好像不太对啊???

object类型数据结构的底层存储。。。
{
  "title":            [ "花无缺", "发表", "一篇", "帖子" ],
  "content":             [ "我", "是", "花无缺", "大家", "要不要", "考虑", "一下", "投资", "房产", "买", "股票", "事情" ],
  "tags":             [ "投资", "理财" ],
  "comments.name":    [ "小鱼儿", "黄药师" ],
  "comments.comment": [ "什么", "股票", "推荐", "我", "喜欢", "投资", "房产", "风险", "收益", "大" ],
  "comments.age":     [ 28, 31 ],
  "comments.stars":   [ 4, 5 ],
  "comments.date":    [ 2016-09-01, 2016-10-22 ]
}
object类型底层数据结构,会将一个json数组中的数据,进行扁平化
所以,直接命中了这个document,name=黄药师,age=28,正好符合

2、引入nested object类型,来解决object类型底层数据结构导致的问题

修改mapping,将comments的类型从object设置为nested
PUT /website
{
  "mappings": {
    "blogs": {
      "properties": {
        "comments": {
          "type": "nested", 
          "properties": {
            "name":    { "type": "string"  },
            "comment": { "type": "string"  },
            "age":     { "type": "short"   },
            "stars":   { "type": "short"   },
            "date":    { "type": "date"    }
          }
        }
      }
    }
  }
}
{ 
  "comments.name":    [ "小鱼儿" ],
  "comments.comment": [ "什么", "股票", "推荐" ],
  "comments.age":     [ 28 ],
  "comments.stars":   [ 4 ],
  "comments.date":    [ 2014-09-01 ]
}
{ 
  "comments.name":    [ "黄药师" ],
  "comments.comment": [ "我", "喜欢", "投资", "房产", "风险", "收益", "大" ],
  "comments.age":     [ 31 ],
  "comments.stars":   [ 5 ],
  "comments.date":    [ 2014-10-22 ]
}
{ 
  "title":            [ "花无缺", "发表", "一篇", "帖子" ],
  "body":             [ "我", "是", "花无缺", "大家", "要不要", "考虑", "一下", "投资", "房产", "买", "股票", "事情" ],
  "tags":             [ "投资", "理财" ]
}
再次搜索,成功了。。。
GET /website/blogs/_search 
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "花无缺"
          }
        },
        {
          "nested": {
            "path": "comments",
            "score_mode": "max";
            "query": {
              "bool": {
                "must": [
                  {
                    "match": {
                      "comments.name": "黄药师"
                    }
                  },
                  {
                    "match": {
                      "comments.age": 28
                    }
                  }
                ]
              }
            }
          }
        }
      ]
    }
  }
}
score_mode:max,min,avg,none,默认是avg
如果搜索命中了多个nested document,如何讲个多个nested document的分数合并为一个分数

我们讲解一下基于nested object中的数据进行聚合分析
聚合数据分析的需求1:按照评论日期进行bucket划分,然后拿到每个月的评论的评分的平均值
GET /website/blogs/_search 
{
  "size": 0, 
  "aggs": {
    "comments_path": {
      "nested": {
        "path": "comments"
      }, 
      "aggs": {
        "group_by_comments_date": {
          "date_histogram": {
            "field": "comments.date",
            "interval": "month",
            "format": "yyyy-MM"
          },
          "aggs": {
            "avg_stars": {
              "avg": {
                "field": "comments.stars"
              }
            }
          }
        }
      }
    }
  }
}
{
  "took": 52,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "comments_path": {
      "doc_count": 4,
      "group_by_comments_date": {
        "buckets": [
          {
            "key_as_string": "2016-08",
            "key": 1470009600000,
            "doc_count": 1,
            "avg_stars": {
              "value": 3
            }
          },
          {
            "key_as_string": "2016-09",
            "key": 1472688000000,
            "doc_count": 2,
            "avg_stars": {
              "value": 4.5
            }
          },
          {
            "key_as_string": "2016-10",
            "key": 1475280000000,
            "doc_count": 1,
            "avg_stars": {
              "value": 5
            }
          }
        ]
      }
    }
  }
}

当根据nested object类型聚合下钻时候,可以用过reverse_path, 获取其他object field进行下钻。

GET /website/blogs/_search 
{
  "size": 0,
  "aggs": {
    "comments_path": {
      "nested": {
        "path": "comments"
      },
      "aggs": {
        "group_by_comments_age": {
          "histogram": {
            "field": "comments.age",
            "interval": 10
          },
          "aggs": {
            "reverse_path": {
              "reverse_nested": {}, 
              "aggs": {
                "group_by_tags": {
                  "terms": {
                    "field": "tags.keyword"
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "comments_path": {
      "doc_count": 4,
      "group_by_comments_age": {
        "buckets": [
          {
            "key": 20,
            "doc_count": 1,
            "reverse_path": {
              "doc_count": 1,
              "group_by_tags": {
                "doc_count_error_upper_bound": 0,
                "sum_other_doc_count": 0,
                "buckets": [
                  {
                    "key": "投资",
                    "doc_count": 1
                  },
                  {
                    "key": "理财",
                    "doc_count": 1
                  }
                ]
              }
            }
          },
          {
            "key": 30,
            "doc_count": 3,
            "reverse_path": {
              "doc_count": 2,
              "group_by_tags": {
                "doc_count_error_upper_bound": 0,
                "sum_other_doc_count": 0,
                "buckets": [
                  {
                    "key": "大侠",
                    "doc_count": 1
                  },
                  {
                    "key": "投资",
                    "doc_count": 1
                  },
                  {
                    "key": "理财",
                    "doc_count": 1
                  },
                  {
                    "key": "练功",
                    "doc_count": 1
                  }
                ]
              }
            }
          }
        ]
      }
    }
  }
}


父子关系
nested object的建模,有个不好的地方,就是采取的是类似冗余数据的方式,将多个数据都放在一起了,维护成本就比较高

parent child建模方式,采取的是类似于关系型数据库的三范式类的建模,多个实体都分割开来,每个实体之间都通过一些关联方式,进行了父子关系的关联,各种数据不需要都放在一起,父doc和子doc分别在进行更新的时候,都不会影响对方

一对多关系的建模,维护起来比较方便,而且我们之前说过,类似关系型数据库的建模方式,应用层join的方式,会导致性能比较差,因为做多次搜索。父子关系的数据模型,不会,性能很好。因为虽然数据实体之间分割开来,但是我们在搜索的时候,由es自动为我们处理底层的关联关系,并且通过一些手段保证搜索性能。

父子关系数据模型,相对于nested数据模型来说,优点是父doc和子doc互相之间不会影响

要点:父子关系元数据映射,用于确保查询时候的高性能,但是有一个限制,就是父子数据必须存在于一个shard中

父子关系数据存在一个shard中,而且还有映射其关联关系的元数据,那么搜索父子关系数据的时候,不用跨分片,一个分片本地自己就搞定了,性能当然高咯

案例背景:研发中心员工管理案例,一个IT公司有多个研发中心,每个研发中心有多个员工
PUT /company
{
  "mappings": {
    "rd_center": {},
    "employee": {
      "_parent": {
        "type": "rd_center" 
      }
    }
  }
}
父子关系建模的核心,多个type之间有父子关系,用_parent指定父type
POST /company/rd_center/_bulk
{ "index": { "_id": "1" }}
{ "name": "北京研发总部", "city": "北京", "country": "中国" }
{ "index": { "_id": "2" }}
{ "name": "上海研发中心", "city": "上海", "country": "中国" }
{ "index": { "_id": "3" }}
{ "name": "硅谷人工智能实验室", "city": "硅谷", "country": "美国" }
shard路由的时候,id=1的rd_center doc,默认会根据id进行路由,到某一个shard
PUT /company/employee/1?parent=1 
{
  "name":  "张三",
  "birthday":   "1970-10-24",
  "hobby": "爬山"
}
维护父子关系的核心,parent=1,指定了这个数据的父doc的id

此时,parent-child关系,就确保了说,父doc和子doc都是保存在一个shard上的。内部原理还是doc routing,employee和rd_center的数据,都会用parent id作为routing,这样就会到一个shard

就不会根据id=1的employee doc的id进行路由了,而是根据parent=1进行路由,会根据父doc的id进行路由,那么就可以通过底层的路由机制,保证父子数据存在于一个shard中
POST /company/employee/_bulk
{ "index": { "_id": 2, "parent": "1" }}
{ "name": "李四", "birthday": "1982-05-16", "hobby": "游泳" }
{ "index": { "_id": 3, "parent": "2" }}
{ "name": "王二", "birthday": "1979-04-01", "hobby": "爬山" }
{ "index": { "_id": 4, "parent": "3" }}
{ "name": "赵五", "birthday": "1987-05-11", "hobby": "骑马" }
我们已经建立了父子关系的数据模型之后,就要基于这个模型进行各种搜索和聚合了

1、搜索有1980年以后出生的员工的研发中心
GET /company/rd_center/_search
{
  "query": {
    "has_child": {
      "type": "employee",
      "query": {
        "range": {
          "birthday": {
            "gte": "1980-01-01"
          }
        }
      }
    }
  }
}
{
  "took": 33,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1,
    "hits": [
      {
        "_index": "company",
        "_type": "rd_center",
        "_id": "1",
        "_score": 1,
        "_source": {
          "name": "北京研发总部",
          "city": "北京",
          "country": "中国"
        }
      },
      {
        "_index": "company",
        "_type": "rd_center",
        "_id": "3",
        "_score": 1,
        "_source": {
          "name": "硅谷人工智能实验室",
          "city": "硅谷",
          "country": "美国"
        }
      }
    ]
  }
}
2、搜索有名叫张三的员工的研发中心
GET /company/rd_center/_search
{
  "query": {
    "has_child": {
      "type":       "employee",
      "query": {
        "match": {
          "name": "张三"
        }
      }
    }
  }
}
{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "company",
        "_type": "rd_center",
        "_id": "1",
        "_score": 1,
        "_source": {
          "name": "北京研发总部",
          "city": "北京",
          "country": "中国"
        }
      }
    ]
  }
}
3、搜索有至少2个以上员工的研发中心
GET /company/rd_center/_search
{
  "query": {
    "has_child": {
      "type":         "employee",
      "min_children": 2, 
      "query": {
        "match_all": {}
      }
    }
  }
}
{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "company",
        "_type": "rd_center",
        "_id": "1",
        "_score": 1,
        "_source": {
          "name": "北京研发总部",
          "city": "北京",
          "country": "中国"
        }
      }
    ]
  }
}
4、搜索在中国的研发中心的员工
GET /company/employee/_search 
{
  "query": {
    "has_parent": {
      "parent_type": "rd_center",
      "query": {
        "term": {
          "country.keyword": "中国"
        }
      }
    }
  }
}
{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 1,
    "hits": [
      {
        "_index": "company",
        "_type": "employee",
        "_id": "3",
        "_score": 1,
        "_routing": "2",
        "_parent": "2",
        "_source": {
          "name": "王二",
          "birthday": "1979-04-01",
          "hobby": "爬山"
        }
      },
      {
        "_index": "company",
        "_type": "employee",
        "_id": "1",
        "_score": 1,
        "_routing": "1",
        "_parent": "1",
        "_source": {
          "name": "张三",
          "birthday": "1970-10-24",
          "hobby": "爬山"
        }
      },
      {
        "_index": "company",
        "_type": "employee",
        "_id": "2",
        "_score": 1,
        "_routing": "1",
        "_parent": "1",
        "_source": {
          "name": "李四",
          "birthday": "1982-05-16",
          "hobby": "游泳"
        }
      }
    ]
  }
}
5、统计每个国家的喜欢每种爱好的员工有多少个
GET /company/rd_center/_search 
{
  "size": 0,
  "aggs": {
    "group_by_country": {
      "terms": {
        "field": "country.keyword"
      },
      "aggs": {
        "group_by_child_employee": {
          "children": {
            "type": "employee"
          },
          "aggs": {
            "group_by_hobby": {
              "terms": {
                "field": "hobby.keyword"
              }
            }
          }
        }
      }
    }
  }
}
{
  "took": 15,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_country": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "中国",
          "doc_count": 2,
          "group_by_child_employee": {
            "doc_count": 3,
            "group_by_hobby": {
              "doc_count_error_upper_bound": 0,
              "sum_other_doc_count": 0,
              "buckets": [
                {
                  "key": "爬山",
                  "doc_count": 2
                },
                {
                  "key": "游泳",
                  "doc_count": 1
                }
              ]
            }
          }
        },
        {
          "key": "美国",
          "doc_count": 1,
          "group_by_child_employee": {
            "doc_count": 1,
            "group_by_hobby": {
              "doc_count_error_upper_bound": 0,
              "sum_other_doc_count": 0,
              "buckets": [
                {
                  "key": "骑马",
                  "doc_count": 1
                }
              ]
            }
          }
        }
      ]
    }
  }
}

父子关系,祖孙三层关系的数据建模,搜索
PUT /company
{
  "mappings": {
    "country": {},
    "rd_center": {
      "_parent": {
        "type": "country" 
      }
    },
    "employee": {
      "_parent": {
        "type": "rd_center" 
      }
    }
  }
}
country -> rd_center -> employee,祖孙三层数据模型
POST /company/country/_bulk
{ "index": { "_id": "1" }}
{ "name": "中国" }
{ "index": { "_id": "2" }}
{ "name": "美国" }
POST /company/rd_center/_bulk
{ "index": { "_id": "1", "parent": "1" }}
{ "name": "北京研发总部" }
{ "index": { "_id": "2", "parent": "1" }}
{ "name": "上海研发中心" }
{ "index": { "_id": "3", "parent": "2" }}
{ "name": "硅谷人工智能实验室" }
PUT /company/employee/1?parent=1&routing=1
{
  "name":  "张三",
  "dob":   "1970-10-24",
  "hobby": "爬山"
} 
routing参数的讲解,必须跟grandparent相同,否则有问题

country,用的是自己的id去路由; rd_center,parent,用的是country的id去路由; employee,如果也是仅仅指定一个parent,那么用的是rd_center的id去路由,这就导致祖孙三层数据不会在一个shard上

孙子辈儿,要手动指定routing,指定为爷爷辈儿的数据的id

搜索有爬山爱好的员工所在的国家
GET /company/country/_search
{
  "query": {
    "has_child": {
      "type": "rd_center",
      "query": {
        "has_child": {
          "type": "employee",
          "query": {
            "match": {
              "hobby": "爬山"
            }
          }
        }
      }
    }
  }
}
{
  "took": 10,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "company",
        "_type": "country",
        "_id": "1",
        "_score": 1,
        "_source": {
          "name": "中国"
        }
      }
    ]
  }
}














posted @ 2018-05-29 16:56  91vincent  阅读(244)  评论(0编辑  收藏  举报