Netty之大动脉Pipeline
Pipeline 设计原理
Channel 与ChannelPipeline:
相信大家都已经知道,在Netty 中每个Channel 都有且仅有一个ChannelPipeline 与之对应,它们的组成关系如下:
通过上图我们可以看到, 一个Channel 包含了一个ChannelPipeline , 而ChannelPipeline 中又维护了一个由ChannelHandlerContext 组成的双向链表。这个链表的头是HeadContext,链表的尾是TailContext,并且每个ChannelHandlerContext 中又关联着一个ChannelHandler。图示给了我们一个对ChannelPipeline 的直观认识,但是实际上Netty 实现的Channel 是否真的是这样的呢?我们继续用源码说话。在前我们已经知道了一个Channel 的初始化的基本过程,下面我们再回顾一下。下面的代码是AbstractChannel 构造器:
protected AbstractChannel(Channel parent) { this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline(); }
AbstractChannel 有一个pipeline 字段,在构造器中会初始化它为DefaultChannelPipeline 的实例。这里的代码就印证了一点:每个Channel 都有一个ChannelPipeline。接着我们跟踪一下DefaultChannelPipeline 的初始化过程,首先进入到DefaultChannelPipeline 构造器中:
protected DefaultChannelPipeline(Channel channel) { this.channel = ObjectUtil.checkNotNull(channel, "channel"); succeededFuture = new SucceededChannelFuture(channel, null); voidPromise = new VoidChannelPromise(channel, true); tail = new TailContext(this); head = new HeadContext(this); head.next = tail; tail.prev = head; }
在DefaultChannelPipeline 构造器中, 首先将与之关联的Channel 保存到字段channel 中。然后实例化两个ChannelHandlerContext:一个是HeadContext 实例head,另一个是TailContext 实例tail。接着将head 和tail 互相指向, 构成一个双向链表。
特别注意的是:我们在开始的示意图中head 和tail 并没有包含ChannelHandler,这是因为HeadContext 和TailContext继承于AbstractChannelHandlerContext 的同时也实现了ChannelHandler 接口了,因此它们有Context 和Handler的双重属性。
再探ChannelPipeline 的初始化:
前面的学习我们已经对ChannelPipeline 的初始化有了一个大致的了解,不过当时重点没有关注ChannelPipeline,因此没有深入地分析它的初始化过程。那么下面我们就来看一下具体的ChannelPipeline 的初始化都做了哪些工作吧。先回顾一下,在实例化一个Channel 时,会伴随着一个ChannelPipeline 的实例化,并且此Channel 会与这个ChannelPipeline相互关联,这一点可以通过NioSocketChannel 的父类AbstractChannel 的构造器予以佐证:
protected AbstractChannel(Channel parent) { this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline(); }
当实例化一个NioSocketChannel 是,其pipeline 字段就是我们新创建的DefaultChannelPipeline 对象。可以看到,在DefaultChannelPipeline 的构造方法中,将传入的channel 赋值给字段this.channel,接着又实例化了两个特殊的字段:tail 与head,这两个字段是一个双向链表的头和尾。其实在DefaultChannelPipeline 中,维护了一个以AbstractChannelHandlerContext 为节点的双向链表,这个链表是Netty 实现Pipeline 机制的关键。再回顾一下head和tail 的类层次结构:
从类层次结构图中可以很清楚地看到,head 实现了ChannelInboundHandler与ChannelOutboundHandler,而tail 实现了ChannelOutboundHandler 接口,并且它们都实现了ChannelHandlerContext 接口, 因此可以说head 和tail 即是一个ChannelHandler,又是一个ChannelHandlerContext。接着看HeadContext与TailContext 构造器中的代码:
HeadContext(DefaultChannelPipeline pipeline) {
super(pipeline, (EventExecutor)null, DefaultChannelPipeline.HEAD_NAME, false, true);
this.unsafe = pipeline.channel().unsafe();
this.setAddComplete();
}
TailContext(DefaultChannelPipeline pipeline) {
super(pipeline, (EventExecutor)null, DefaultChannelPipeline.TAIL_NAME, true, false);
this.setAddComplete();
}
我们可以看到,链表中head 是一个ChannelOutboundHandler,而tail 则是一个ChannelInboundHandler。它调用了父类AbstractChannelHandlerContext 的构造器,并传入参数inbound = false,outbound = true。而TailContext 的构造器与HeadContext 的相反,它调用了父类AbstractChannelHandlerContext 的构造器,并传入参数inbound = true,outbound = false。即header 是一个OutBoundHandler,而tail 是一个InBoundHandler。
ChannelInitializer 的添加:
前面我们已经分析过Channel 的组成,其中我们了解到,最开始的时候ChannelPipeline 中含有两个ChannelHandlerContext(同时也是ChannelHandler),但是这个Pipeline 并不能实现什么特殊的功能,因为我们还没有给它添加自定义的ChannelHandler。通常来说,我们在初始化Bootstrap,会添加我们自定义的ChannelHandler,就以我们具体的客户端启动代码片段来举例:
Bootstrap bootstrap = new Bootstrap(); bootstrap.group(group)
.channel(NioSocketChannel.class)
.option(ChannelOption.SO_KEEPALIVE, true)
.handler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ChannelPipeline pipeline = ch.pipeline();
pipeline.addLast(new ChatClientHandler(nickName));
}
});
上面代码的初始化过程,相信大家都不陌生。在调用handler 时,传入了ChannelInitializer 对象,它提供了一个initChannel()方法给我我们初始化ChannelHandler。最后将这个匿名的Handler保存到AbstractBootstrap中。那么这个初始化过程是怎样的呢?下面我们来揭开它的神秘面纱。
ChannelInitializer 实现了ChannelHandler,那么它是在什么时候添加到ChannelPipeline 中的呢?通过代码跟踪,我们发现它是在Bootstrap 的init()方法中添加到ChannelPipeline 中的,其代码如下(以客户端为例):
void init(Channel channel) throws Exception { ChannelPipeline p = channel.pipeline(); p.addLast(new ChannelHandler[]{this.config.handler()}); 。。。。。。 } //AbstractBootstrapConfig public final ChannelHandler handler() { return this.bootstrap.handler(); } //AbstractBootstrap final ChannelHandler handler() { return this.handler; }
从上面的代码可见,将handler()返回的ChannelHandler 添加到Pipeline 中,而handler()返回的其实就是我们在初始化Bootstrap 时通过handler()方法设置的ChannelInitializer 实例,因此这里就是将ChannelInitializer 插入到了Pipeline的末端。此时Pipeline 的结构如下图所示:
这时候,有小伙伴可能就有疑惑了,我明明插入的是一个ChannelInitializer 实例,为什么在ChannelPipeline 中的双向链表中的元素却是一个ChannelHandlerContext 呢?我们继续去源码中寻找答案。
刚才,我们提到,在Bootstrap 的init()方法中会调用p.addLast()方法,将ChannelInitializer 插入到链表的末端:
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) { final AbstractChannelHandlerContext newCtx; synchronized(this) { checkMultiplicity(handler); newCtx = this.newContext(group, this.filterName(name, handler), handler);
this.addLast0(newCtx);
}
private AbstractChannelHandlerContext newContext(EventExecutorGroup group, String name, ChannelHandler handler) {
return new DefaultChannelHandlerContext(this, this.childExecutor(group), name, handler);
}
addLast()有很多重载的方法,我们只需关注这个比较重要的方法就行。上面的addLast()方法中,首先检查ChannelHandler 的名字是否是重复,如果不重复,则调用newContex()方法为这个Handler 创建一个对应的DefaultChannelHandlerContext 实例,并与之关联起来(Context 中有一个handler 属性保存着对应的Handler 实例)。为了添加一个handler 到pipeline 中,必须把此handler 包装成ChannelHandlerContext。因此在上面的代码中我们可以看到新实例化了一个newCtx 对象,并将handler 作为参数传递到构造方法中。那么我们来看一下实例化的DefaultChannelHandlerContext 到底有什么玄机吧。首先看它的构造器:
DefaultChannelHandlerContext(DefaultChannelPipeline pipeline, EventExecutor executor, String name, ChannelHandler handler) { super(pipeline, executor, name, isInbound(handler), isOutbound(handler)); if (handler == null) { throw new NullPointerException("handler"); } else { this.handler = handler; } }
在DefaultChannelHandlerContext 的构造器中,调用了两个很有意思的方法:isInbound()与isOutbound(),这两个方法是做什么的呢?从源码中可以看到,当一个handler 实现了ChannelInboundHandler 接口,则isInbound 返回true;类似地,当一个handler 实现了ChannelOutboundHandler 接口,则isOutbound 就返回true。而这两个boolean 变量会传递到父类AbstractChannelHandlerContext 中,并初始化父类的两个字段:inbound 与outbound。那么这里的ChannelInitializer 所对应的DefaultChannelHandlerContext 的inbound 与outbound 字段分别是什么呢? 那就看一下ChannelInitializer 到底实现了哪个接口不就行了?如下是ChannelInitializer 的类层次结构图:
从类图中可以清楚地看到,ChannelInitializer 仅仅实现了ChannelInboundHandler 接口,因此这里实例化的DefaultChannelHandlerContext 的inbound = true,outbound = false。兜了一圈,不就是inbound 和outbound 两个字段嘛,为什么需要这么大费周折地分析一番?其实这两个字段关系到pipeline 的事件的流向与分类,因此是十分关键的,不过我在这里先卖个关子, 后面我们再来详细分析这两个字段所起的作用。至此, 我们暂时先记住一个结论:ChannelInitializer 所对应的DefaultChannelHandlerContext 的inbound =true,outbound = false。当创建好Context 之后,就将这个Context 插入到Pipeline 的双向链表中
private void addLast0(AbstractChannelHandlerContext newCtx) { AbstractChannelHandlerContext prev = this.tail.prev; newCtx.prev = prev; newCtx.next = this.tail; prev.next = newCtx; this.tail.prev = newCtx; }
添加完ChannelInitializer的Pipeline现在是长这样的:
自定义ChannelHandler 的添加过程:
前面我们已经分析了ChannelInitializer 是如何插入到Pipeline 中的,接下来就来探讨ChannelInitializer 在哪里被调用,ChannelInitializer 的作用以及我们自定义的ChannelHandler 是如何插入到Pipeline 中的。先简单复习一下Channel 的注册过程:
- 首先在AbstractBootstrap 的initAndRegister()中,通过group().register(channel),调用MultithreadEventLoopGroup 的register()方法。
- 在MultithreadEventLoopGroup 的register()中调用next()获取一个可用的SingleThreadEventLoop,然后调用它的register()方法。
- 在SingleThreadEventLoop 的register()方法中,通过channel.unsafe().register(this, promise)方法获取channel的unsafe()底层IO 操作对象,然后调用它的register()。
- 在AbstractUnsafe 的register()方法中,调用register0()方法注册Channel 对象。
- 在AbstractUnsafe 的register0()方法中,调用AbstractNioChannel 的doRegister()方法。
- AbstractNioChannel 的doRegister()方法调用javaChannel().register(eventLoop().selector, 0, this)将Channel对应的Java NIO 的SockerChannel 对象注册到一个eventLoop 的Selector 中,并且将当前Channel 作为attachment。
而我们自定义ChannelHandler 的添加过程,发生在AbstractUnsafe 的register0()方法中,在这个方法中调用了pipeline.fireChannelRegistered()方法,其代码实现如下:
private void register0(ChannelPromise promise) { boolean firstRegistration = this.neverRegistered; AbstractChannel.this.doRegister(); this.neverRegistered = false; AbstractChannel.this.registered = true; AbstractChannel.this.pipeline.invokeHandlerAddedIfNeeded(); this.safeSetSuccess(promise); AbstractChannel.this.pipeline.fireChannelRegistered(); } public final ChannelPipeline fireChannelRegistered() { AbstractChannelHandlerContext.invokeChannelRegistered(this.head); return this; }
再看AbstractChannelHandlerContext 的invokeChannelRegistered()方法:
static void invokeChannelRegistered(final AbstractChannelHandlerContext next) { EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeChannelRegistered(); } else { executor.execute(new Runnable() { public void run() { next.invokeChannelRegistered(); } }); } }
很显然,这个代码会从head 开始遍历Pipeline 的双向链表,然后 findContextInbound() 找到第一个属性inbound 为true 的ChannelHandlerContext 实例。看代码:
public void channelRegistered(ChannelHandlerContext ctx) throws Exception { DefaultChannelPipeline.this.invokeHandlerAddedIfNeeded(); ctx.fireChannelRegistered(); } public ChannelHandlerContext fireChannelRegistered() { invokeChannelRegistered(this.findContextInbound()); return this; }
想起来了没?我们在前面分析ChannelInitializer 时,花了大量的篇幅来分析了inbound和outbound 属性,现在这里就用上了。回想一下,ChannelInitializer 实现了ChannelInboudHandler,因此它所对应的ChannelHandlerContext 的inbound 属性就是true,因此这里返回就是ChannelInitializer 实例所对应的ChannelHandlerContext 对象,如下图所示:
当获取到inbound 的Context 后,就调用它的invokeChannelRegistered()方法:
private void invokeChannelRegistered() { if (this.invokeHandler()) { try { ((ChannelInboundHandler)this.handler()).channelRegistered(this); } catch (Throwable var2) { this.notifyHandlerException(var2); } } else { this.fireChannelRegistered(); } }
我们已经知道,每个ChannelHandler 都和一个ChannelHandlerContext 关联,我们可以通过ChannelHandlerContext获取到对应的ChannelHandler。因此很明显,这里handler()返回的对象其实就是一开始我们实例化的ChannelInitializer 对象,并接着调用了ChannelInitializer 的channelRegistered()方法。看到这里, 应该会觉得有点眼熟了。ChannelInitializer 的channelRegistered()这个方法我们在一开始的时候已经接触到了,但是我们并没有深入地分析这个方法的调用过程。下面我们来看这个方法中到底有什么玄机,继续看代码:
public abstract class ChannelInitializer<C extends Channel> extends ChannelInboundHandlerAdapter {
protected abstract void initChannel(C ch) throws Exception;
@Override
@SuppressWarnings("unchecked")
public final void channelRegistered(ChannelHandlerContext ctx) throws Exception {
if (initChannel(ctx)) {
ctx.pipeline().fireChannelRegistered();
removeState(ctx);
} else {
ctx.fireChannelRegistered();
}
}private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
if (initMap.add(ctx)) { // Guard against re-entrance.
try {
initChannel((C) ctx.channel());
} catch (Throwable cause) {
exceptionCaught(ctx, cause);
} finally {
ChannelPipeline pipeline = ctx.pipeline();
if (pipeline.context(this) != null) {
pipeline.remove(this);
}
}
return true;
}
return false;
}
}
initChannel((C) ctx.channel())这个方法我们也很熟悉,它就是我们在初始化Bootstrap 时,调用handler 方法传入的匿名内部类所实现的方法:
protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); pipeline.addLast("handler", new MyClient());
}
因此,当调用这个方法之后, 我们自定义的ChannelHandler 就插入到了Pipeline,此时Pipeline 的状态如下图所示:
当添加完成自定义的ChannelHandler 后,在finally 代码块会删除自定义的ChannelInitializer,也就是remove(ctx)最终调用ctx.pipeline().remove(this),因此最后的Pipeline 的状态如下:
至此,自定义ChannelHandler 的添加过程也分析得差不多了。
ChannelHandler 默认命名规则
不知道大家注意到没有,pipeline.addXXX 都有一个重载的方法,例如addLast()它有一个重载的版本是:ChannelPipeline addLast(String name, ChannelHandler handler);第一个参数指定添加的handler 的名字(更准确地说是ChannelHandlerContext 的名字,说成handler 的名字更便于理解)。那么handler 的名字有什么用呢?如果我们不设置name,那么handler 默认的名字是怎样呢?带着这些疑问,我们依旧还是去源码中找到答案。还是以addLast()方法为例:
public final ChannelPipeline addLast(String name, ChannelHandler handler) { return addLast(null, name, handler); }
这个方法会调用重载的addLast()方法:
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) { final AbstractChannelHandlerContext newCtx; synchronized (this) { checkMultiplicity(handler); newCtx = newContext(group, filterName(name, handler), handler); addLast0(newCtx);return this; }
第一个参数被设置为null,我们不用关心它。第二参数就是这个handler 的名字。看代码可知,在添加一个handler之前,需要调用checkMultiplicity()方法来确定新添加的handler 名字是否与已添加的handler 名字重复。
如果我们调用的是如下的addLast()方法:ChannelPipeline addLast(ChannelHandler... handlers);那么Netty 就会调用generateName()方法为新添加的handler 自动生成一个默认的名字:
private String filterName(String name, ChannelHandler handler) { if (name == null) { return generateName(handler); } checkDuplicateName(name); return name; }
private String generateName(ChannelHandler handler) {
Map<Class<?>, String> cache = nameCaches.get();
Class<?> handlerType = handler.getClass();
String name = cache.get(handlerType);
if (name == null) {
name = generateName0(handlerType);
cache.put(handlerType, name);
}
if (context0(name) != null) {
String baseName = name.substring(0, name.length() - 1); // Strip the trailing '0'.
for (int i = 1;; i ++) {
String newName = baseName + i;
if (context0(newName) == null) {
name = newName;
break;
}
}
}
return name;
}
而generateName()方法会接着调用generateName0()方法来实际生成一个新的handler 名字:
private static String generateName0(Class<?> handlerType) { return StringUtil.simpleClassName(handlerType) + "#0"; }
默认命名的规则很简单,就是用反射获取handler 的simpleName 加上"#0",因此我们自定义ChatClientHandler 的名字就是"ChatClientHandler#0"。
Pipeline 的事件传播机制
前面章节中,我们已经知道AbstractChannelHandlerContext 中有inbound 和outbound 两个boolean 变量,分别用于标识Context 所对应的handler 的类型,即:
- inbound 为true 是,表示其对应的ChannelHandler 是ChannelInboundHandler 的子类。
- outbound 为true 时,表示对应的ChannelHandler 是ChannelOutboundHandler 的子类。
这里大家肯定还有很多疑惑,不知道这两个字段到底有什么作用? 这还要从ChannelPipeline 的事件传播类型说起。Netty 中的传播事件可以分为两种:Inbound 事件和Outbound 事件。如下是从Netty 官网针对这两个事件的说明:
从上图可以看出,inbound 事件和outbound 事件的流向是不一样的,inbound 事件的流行是从下至上,而outbound刚好相反,是从上到下。并且inbound 的传递方式是通过调用相应的ChannelHandlerContext.fireIN_EVT()方法,而outbound 方法的的传递方式是通过调用ChannelHandlerContext.OUT_EVT()方法。例如:ChannelHandlerContext的fireChannelRegistered()调用会发送一个ChannelRegistered 的inbound 给下一个ChannelHandlerContext,而ChannelHandlerContext 的bind()方法调用时会发送一个bind 的outbound 事件给下一个ChannelHandlerContext。
Inbound 事件传播方法有:
public interface ChannelInboundHandler extends ChannelHandler { void channelRegistered(ChannelHandlerContext var1) throws Exception; void channelUnregistered(ChannelHandlerContext var1) throws Exception; void channelActive(ChannelHandlerContext var1) throws Exception; void channelInactive(ChannelHandlerContext var1) throws Exception; void channelRead(ChannelHandlerContext var1, Object var2) throws Exception; void channelReadComplete(ChannelHandlerContext var1) throws Exception; void userEventTriggered(ChannelHandlerContext var1, Object var2) throws Exception; void channelWritabilityChanged(ChannelHandlerContext var1) throws Exception; void exceptionCaught(ChannelHandlerContext var1, Throwable var2) throws Exception; }
Outbound 事件传播方法有:
public interface ChannelOutboundHandler extends ChannelHandler { void bind(ChannelHandlerContext var1, SocketAddress var2, ChannelPromise var3) throws Exception; void connect(ChannelHandlerContext var1, SocketAddress var2, SocketAddress var3, ChannelPromise var4) throws Exception; void disconnect(ChannelHandlerContext var1, ChannelPromise var2) throws Exception; void close(ChannelHandlerContext var1, ChannelPromise var2) throws Exception; void deregister(ChannelHandlerContext var1, ChannelPromise var2) throws Exception; void read(ChannelHandlerContext var1) throws Exception; void write(ChannelHandlerContext var1, Object var2, ChannelPromise var3) throws Exception; void flush(ChannelHandlerContext var1) throws Exception; }
大家应该发现了规律:inbound 类似于是事件回调(响应请求的事件),而outbound 类似于主动触发(发起请求的事件)。注意,如果我们捕获了一个事件,并且想让这个事件继续传递下去,那么需要调用Context 对应的传播方法 fireXXX,例如:
public class MyInboundHandler extends ChannelInboundHandlerAdapter { @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { System.out.println("连接成功"); ctx.fireChannelActive(); } }
Outbound 事件传播方式:
Outbound 事件都是请求事件(request event),即请求某件事情的发生,然后通过Outbound 事件进行通知。Outbound 事件的传播方向是tail -> customContext -> head。我们接下来以connect 事件为例,分析一下Outbound 事件的传播机制。首先,当用户调用了Bootstrap 的connect()方法时,就会触发一个Connect 请求事件,我们就发现AbstractChannel 的connect()其实由调用了DefaultChannelPipeline 的connect()方法:
public ChannelFuture connect(SocketAddress remoteAddress) {
return pipeline.connect(remoteAddress);
}
而pipeline.connect()方法的实现如下:
public final ChannelFuture connect(SocketAddress remoteAddress) { return tail.connect(remoteAddress); }
可以看到,当outbound 事件(这里是connect 事件)传递到Pipeline 后,它其实是以tail 为起点开始传播的。而tail.connect()其实调用的是AbstractChannelHandlerContext 的connect()方法:
public ChannelFuture connect( final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) { final AbstractChannelHandlerContext next = findContextOutbound(MASK_CONNECT); EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeConnect(remoteAddress, localAddress, promise);return promise; }
findContextOutbound()方法顾名思义,它的作用是以当前Context 为起点,向Pipeline 中的Context 双向链表的前端寻找第一个outbound 属性为true 的Context(即关联ChannelOutboundHandler 的Context),然后返回。findContextOutbound()方法代码实现如下:
private AbstractChannelHandlerContext findContextOutbound(int mask) { AbstractChannelHandlerContext ctx = this; do { ctx = ctx.prev; } while ((ctx.executionMask & mask) == 0); return ctx; }
当我们找到了一个outbound 的Context 后,就调用它的invokeConnect()方法,这个方法中会调用Context 其关联的ChannelHandler 的connect()方法
private void invokeConnect(SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise) { if (invokeHandler()) { try { ((ChannelOutboundHandler) handler()).connect(this, remoteAddress, localAddress, promise); } catch (Throwable t) { notifyOutboundHandlerException(t, promise); } } else { connect(remoteAddress, localAddress, promise); } }
如果用户没有重写ChannelHandler 的connect()方法,那么会调用ChannelOutboundHandlerAdapter 的connect()实现:
public void connect(ChannelHandlerContext ctx, SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise) throws Exception { ctx.connect(remoteAddress, localAddress, promise); }
我们看到,ChannelOutboundHandlerAdapter 的connect()仅仅调用了ctx.connect(),而这个调用又回到了:Context.connect -> Connect.findContextOutbound -> next.invokeConnect -> handler.connect -> Context.connect这样的循环中,直到connect 事件传递到DefaultChannelPipeline 的双向链表的头节点,即head 中。为什么会传递到head 中呢?回想一下,head 实现了ChannelOutboundHandler,因此它的outbound 属性是true。因为head 本身既是一个ChannelHandlerContext,又实现了ChannelOutboundHandler 接口,因此当connect()消息传递到head 后,会将消息转递到对应的ChannelHandler 中处理,而head 的handler()方法返回的就是head 本身:
public ChannelHandler handler() { return this; }
因此最终connect()事件是在head 中被处理。head 的connect()事件处理逻辑如下:
public void connect( ChannelHandlerContext ctx, SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise) { unsafe.connect(remoteAddress, localAddress, promise); }
到这里, 整个connect()请求事件就结束了。下图中描述了整个connect()请求事件的处理过程:
我们仅仅以connect()请求事件为例,分析了outbound 事件的传播过程,但是其实所有的outbound 的事件传播都遵循着一样的传播规律,小伙伴们可以试着分析一下其他的outbound 事件,体会一下它们的传播过程。
Inbound 事件传播方式:
Inbound 事件和Outbound 事件的处理过程是类似的,只是传播方向不同。Inbound 事件是一个通知事件,即某件事已经发生了,然后通过Inbound 事件进行通知。Inbound 通常发生在Channel的状态的改变或IO 事件就绪。Inbound 的特点是它传播方向是head -> customContext -> tail。上面我们分析了connect()这个Outbound 事件,那么接着分析connect()事件后会发生什么Inbound 事件,并最终找到Outbound 和Inbound 事件之间的联系。当connect()这个Outbound 传播到unsafe 后,其实是在AbstractNioUnsafe的connect()方法中进行处理的:
public final void connect( final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) { boolean wasActive = isActive(); if (doConnect(remoteAddress, localAddress)) { fulfillConnectPromise(promise, wasActive); } else { } }
在AbstractNioUnsafe 的connect()方法中,首先调用doConnect()方法进行实际上的Socket 连接,当连接上后会调用fulfillConnectPromise()方法:
private void fulfillConnectPromise(ChannelPromise promise, boolean wasActive) { if (!wasActive && active) { pipeline().fireChannelActive(); } }
我们看到,在fulfillConnectPromise()中,会通过调用pipeline().fireChannelActive()方法将通道激活的消息(即Socket 连接成功)发送出去。而这里,当调用pipeline.fireXXX 后,就是Inbound 事件的起点。因此当调用pipeline().fireChannelActive()后,就产生了一个ChannelActive Inbound 事件,我们就从这里开始看看这个Inbound事件是怎么传播的?
public final ChannelPipeline fireChannelActive() { AbstractChannelHandlerContext.invokeChannelActive(head); return this; }
果然, 在fireChannelActive()方法中,调用的是head.invokeChannelActive(),因此可以证明Inbound 事件在Pipeline中传输的起点是head。那么,在head.invokeChannelActive()中又做了什么呢?
static void invokeChannelActive(final AbstractChannelHandlerContext next) { EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeChannelActive(); } else { executor.execute(new Runnable() { @Override public void run() { next.invokeChannelActive(); } }); } }
接下去的调用流程是:
private void invokeChannelActive() { if (this.invokeHandler()) { try { ((ChannelInboundHandler)this.handler()).channelActive(this); } catch (Throwable var2) { this.notifyHandlerException(var2); } } else { this.fireChannelActive(); } } public void channelActive(ChannelHandlerContext ctx) throws Exception { ctx.fireChannelActive(); this.readIfIsAutoRead(); } public ChannelHandlerContext fireChannelActive() { AbstractChannelHandlerContext next = this.findContextInbound(); invokeChannelActive(next); return this; }
上面的代码应该很熟悉了。回想一下在Outbound 事件(例如connect()事件)的传输过程中时,我们也有类似的操作:
- 首先调用findContextInbound(),从Pipeline 的双向链表中中找到第一个属性inbound 为true 的Context,然后将其返回。
- 调用Context 的invokeChannelActive()方法.
invokeChannelActive()方法源码如下:
private void invokeChannelActive() { if (invokeHandler()) { try { ((ChannelInboundHandler) handler()).channelActive(this); } catch (Throwable t) { notifyHandlerException(t); } } else { fireChannelActive(); } }
这个方法和Outbound 的对应方法(如:invokeConnect()方法)如出一辙。与Outbound 一样,如果用户没有重写channelActive() 方法,那就会调用ChannelInboundHandlerAdapter 的channelActive()方法:
public void channelActive(ChannelHandlerContext ctx) throws Exception { ctx.fireChannelActive(); }
同样地, 在ChannelInboundHandlerAdapter 的channelActive()中,仅仅调用了ctx.fireChannelActive()方法,因此就会进入Context.fireChannelActive() -> Connect.findContextInbound() -> nextContext.invokeChannelActive() ->nextHandler.channelActive() -> nextContext.fireChannelActive()这样的循环中。同理,tail 本身既实现了ChannelInboundHandler 接口,又实现了ChannelHandlerContext 接口,因此当channelActive()消息传递到tail 后,会将消息转递到对应的ChannelHandler 中处理,而tail 的handler()返回的就是tail 本身:
public ChannelHandler handler() { return this; }
因此channelActive Inbound 事件最终是在tail 中处理的,我们看一下它的处理方法:
public void channelActive(ChannelHandlerContext ctx) throws Exception { }
TailContext 的channelActive()方法是空的。如果大家自行查看TailContext 的Inbound 处理方法时就会发现,它们的实现都是空的。可见,如果是Inbound,当用户没有实现自定义的处理器时,那么默认是不处理的。下图描述了Inbound事件的传输过程:
Pipeline 事件传播小结:
Outbound 事件总结:
Outbound 事件是请求事件(由connect()发起一个请求,并最终由unsafe 处理这个请求)。
Outbound 事件的发起者是Channel。
Outbound 事件的处理者是unsafe。
Outbound 事件在Pipeline 中的传输方向是tail -> head。
在ChannelHandler 中处理事件时,如果这个Handler 不是最后一个Handler,则需要调用ctx 的方法(如:ctx.connect()方法)将此事件继续传播下去。如果不这样做,那么此事件的传播会提前终止。
Outbound 事件流:Context.OUT_EVT() -> Connect.findContextOutbound() -> nextContext.invokeOUT_EVT()-> nextHandler.OUT_EVT() -> nextContext.OUT_EVT()
Inbound 事件总结:
Inbound 事件是通知事件,当某件事情已经就绪后,通知上层。
Inbound 事件发起者是unsafe。
Inbound 事件的处理者是Channel,如果用户没有实现自定义的处理方法,那么Inbound 事件默认的处理者是TailContext,并且其处理方法是空实现。Inbound 事件在Pipeline 中传输方向是head -> tail。
在ChannelHandler 中处理事件时,如果这个Handler 不是最后一个Handler,则需要调用ctx.fireIN_EVT()事件(如:ctx.fireChannelActive()方法)将此事件继续传播下去。如果不这样做,那么此事件的传播会提前终止。
Outbound 事件流:Context.fireIN_EVT() -> Connect.findContextInbound() -> nextContext.invokeIN_EVT() ->nextHandler.IN_EVT() -> nextContext.fireIN_EVT().
outbound 和inbound 事件设计上十分相似,并且Context 与Handler 直接的调用关系也容易混淆,因此我们在阅读这里的源码时,需要特别的注意。
Handler 的各种姿势:
ChannelHandlerContext
每个ChannelHandler 被添加到ChannelPipeline 后,都会创建一个ChannelHandlerContext 并与之创建的ChannelHandler 关联绑定。ChannelHandlerContext 允许ChannelHandler 与其他的ChannelHandler 实现进行交互。ChannelHandlerContext 不会改变添加到其中的ChannelHandler,因此它是安全的。下图描述了ChannelHandlerContext、ChannelHandler、ChannelPipeline 的关系:
Channel 的生命周期:
Netty 有一个简单但强大的状态模型,并完美映射到ChannelInboundHandler 的各个方法。下面是Channel 生命周期中四个不同的状态:
- channelUnregistered() Channel已创建,还未注册到一个EventLoop上
- channelRegistered() Channel已经注册到一个EventLoop上
- channelActive() Channel是活跃状态(连接到某个远端),可以收发数据
- channelInactive() Channel未连接到远端
一个Channel 正常的生命周期如下图所示。随着状态发生变化相应的事件产生。这些事件被转发到ChannelPipeline中的ChannelHandler 来触发相应的操作。