Python 爬虫七 Scrapy
Scrapy
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下
Scrapy主要包括了以下组件:
- 引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心) - 调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 - 下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的) - 爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面 - 项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。 - 下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。 - 爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。 - 调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器
- 下载器把资源下载下来,并封装成应答包(Response)
- 爬虫解析Response
- 解析出实体(Item),则交给实体管道进行进一步的处理
- 解析出的是链接(URL),则把URL交给调度器等待抓取
一、安装
Linux:
pip3 install scrapy
Windows:
a. pip3 install wheel b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl d. pip3 install scrapy e. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/
二、基本使用
1、创建项目
scrapy startproject 项目名称 - 在当前目录中创建中创建一个项目文件(类似于Django) scrapy genspider [-t template] <name> <domain> - 穿件爬虫应用 如:scrapy gensipider -t basic oldboy oldboy.com scrapy gensipider -t xmlfeed autohome autohome.com.cn 查看所有命令:scrapy gensipider -l 查看模板命令:scrapy gensipider -d 模板名称 scrapy list - 展示爬虫应用列表 scrapy crawl 爬虫应用名称 - 运行单独爬虫应用
创建实例:
创建项目 shuais-MacBook-Pro:~ dandyzhang$ scrapy startproject scrapy_test New Scrapy project 'scrapy_test', using template directory '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/scrapy/templates/project', created in: /Users/dandyzhang/scrapy_test You can start your first spider with: cd scrapy_test scrapy genspider example example.com 进入创建的项目 shuais-MacBook-Pro:~ dandyzhang$ cd scrapy_test/ 创建爬虫应用1 shuais-MacBook-Pro:scrapy_test dandyzhang$ scrapy genspider chouti chouti.com Created spider 'chouti' using template 'basic' in module: scrapy_test.spiders.chouti 创建爬虫应用2 shuais-MacBook-Pro:scrapy_test dandyzhang$ scrapy genspider cnblogs cnblogs.com Created spider 'cnblogs' using template 'basic' in module: scrapy_test.spiders.cnblogs
2、项目结构以及爬虫应用简介
上面的实例,创建好了一个完整的项目:
文件说明:
- scrapy.cfg 项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
- items.py 设置数据存储模板,用于结构化数据,如:Django的Model
- pipelines 数据处理行为,如:一般结构化的数据持久化
- settings.py 配置文件,如:递归的层数、并发数,延迟下载等
- spiders 爬虫目录,如:创建文件,编写爬虫规则
注意:一般创建爬虫文件时,以网站域名命名
此时,发现之前根据命令创建了2个应用都存储在spiders文件夹内,现在以其中的chouti为例,来撰写第一个爬虫
import scrapy class ChoutiSpider(scrapy.Spider): name = 'chouti' # 外部scrapy调用的爬虫应用名称 allowed_domains = ['chouti.com'] # 允许的域名 start_urls = ['http://dig.chouti.com/'] # 起始url def parse(self, response): # 访问起始url并获取结果后的回调函数 print(response.text) # response就是返回结果
查看结果:
如果是window用户可能会遇到编码问题:
import sys,os sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')
3、小试牛刀
如上,需要在抽屉网中抓去热榜的所有标题,图中的框已经标好,从content-list入手,抓取每一个item中class为part2的share-title
class ChoutiSpider(scrapy.Spider): name = 'chouti' allowed_domains = ['chouti.com'] start_urls = ['http://dig.chouti.com/'] def parse(self, response): """ 1.获取想要的内容 2.如果分页,继续下载内容 :param response: :return: """ # 获取当前页的内容 item_list = Selector(response=response).xpath('//div[@id="content-list"]/div[@class="item"]') # /子标签 # //起始位置时,是在全局进行查找;非起始位置是在当前标签的子子孙孙内部找 # ./当前对象下面找 # 获取index为0的对象中的第一个满足条件的文本 # obj = item_list[0].xpath('./div[@class="news-content"]//div[@class="part2"]/@share-title').extract_first() obj_list = item_list.xpath('./div[@class="news-content"]//div[@class="part2"]/@share-title').extract() print(obj_list) # 获取的结果是列表
如果抓取的是标签的内容而不是属性的话:
obj = item_list[0].xpath('./div[@class="news-content"]//div[@class="show-content"]/text()').extract()
执行命令:
shuais-MacBook-Pro:scrapy_test dandyzhang$ scrapy crawl chouti --nolog
结果:
此时,如果分页内的也需要抓取呢?
首先,先获取以下分页内部的url:
import scrapy from scrapy.selector import Selector, HtmlXPathSelector from scrapy.http import Request class ChoutiSpider(scrapy.Spider): name = 'chouti' allowed_domains = ['chouti.com'] start_urls = ['http://dig.chouti.com/'] def parse(self, response): """ 1.获取想要的内容 2.如果分页,继续下载内容 :param response: :return: """ url_list = Selector(response=response).xpath('//div[@id="dig_lcpage"]//a/@href').extract() print(url_list)
运行结果:
shuais-MacBook-Pro:scrapy_test dandyzhang$ scrapy crawl chouti --nolog ['/all/hot/recent/2', '/all/hot/recent/3', '/all/hot/recent/4', '/all/hot/recent/5', '/all/hot/recent/6', '/all/hot/recent/7', '/all/hot/recent/8', '/all/hot/recent/9', '/all/hot/recent/10', '/all/hot/recent/2']
此时需要先拼接url,然后抓取数据:
# -*- coding: utf-8 -*- import scrapy from scrapy.selector import Selector, HtmlXPathSelector from scrapy.http import Request # 这里导入了一个Request,用来迭代 class ChoutiSpider(scrapy.Spider): name = 'chouti' allowed_domains = ['chouti.com'] start_urls = ['http://dig.chouti.com/'] def parse(self, response): """ 1.获取想要的内容 2.如果分页,继续下载内容 :param response: :return: """ item_list = Selector(response=response).xpath('//div[@id="content-list"]/div[@class="item"]') obj_list = item_list.xpath('./div[@class="news-content"]//div[@class="part2"]/@share-title').extract() print(obj_list) url_list = Selector(response=response).xpath('//div[@id="dig_lcpage"]//a/@href').extract() for url in url_list: url = 'http://dig.chouti.com' + url yield Request(url=url) # 迭代处理
这里可以在settings配置文件内设置下钻的深度:
DEPTH_LIMIT = 2
可以发现产生来了多个列表文件:
a、Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
b、HtmlXpathSelector用于结构化HTML代码并提供选择器功能
4、选择器
from scrapy.selector import Selector, HtmlXPathSelector # 一个是新版本,一个是旧版本,后面会被取消 from scrapy.http import HtmlResponse html = """<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <ul> <li class="item-"><a id='i1' href="link.html">first item</a></li> <li class="item-0"><a id='i2' href="llink.html">first item</a></li> <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li> </ul> <div><a href="llink2.html">second item</a></div> </body> </html> """ response = HtmlResponse(url='http://example.com', body=html, encoding='utf-8') # hxs = HtmlXPathSelector(response) # 对象 # print(hxs) # hxs = Selector(response=response).xpath('//a') # 取全局内所有a标签 # print(hxs) # hxs = Selector(response=response).xpath('//a[2]') # 取全局内index为2的a标签 # print(hxs) # hxs = Selector(response=response).xpath('//a[@id]') # 取全局所有有id属性的a标签 # print(hxs) # hxs = Selector(response=response).xpath('//a[@id="i1"]') # 取全局所有id="i1"的a标签 # print(hxs) # hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]') # 取全局所有href为link.html并且id为i1的a标签 # print(hxs) # hxs = Selector(response=response).xpath('//a[contains(@href, "link")]') # 取全局所有href有link字符串的a标签 # print(hxs) # hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]') # 取全局所有href以link字符串开头的a标签 # print(hxs) # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]') # 正则 取全局所有a标签,id属性是i+数字的 # print(hxs) # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract() # 正则 取全局所有a标签,id属性是i+数字的 内部的值 # print(hxs) # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract() # 正则 取全局所有a标签,id属性是i+数字的 href属性值 # print(hxs) # hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract() # print(hxs) # hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first() # print(hxs) # ul_list = Selector(response=response).xpath('//body/ul/li') # for item in ul_list: # v = item.xpath('./a/span') # # 或 # # v = item.xpath('a/span') # # 或 # # v = item.xpath('*/a/span') # print(v)
抽屉点赞:
import scrapy from scrapy.selector import HtmlXPathSelector from scrapy.http.request import Request from scrapy.http.cookies import CookieJar from scrapy import FormRequest class ChouTiSpider(scrapy.Spider): # 爬虫应用的名称,通过此名称启动爬虫命令 name = "chouti" # 允许的域名 allowed_domains = ["chouti.com"] cookie_dict = {} has_request_set = {} # 发送过请求的集合 def start_requests(self): # 继承Spider,Spider内部先执行的是start_requests方法 url = 'http://dig.chouti.com/' # return [Request(url=url, callback=self.login)] yield Request(url=url, callback=self.login) # 爬取网页,指定回调函数;其实Request默认的callback是parse, # 这也解释了为什么新建的爬虫应用内部都是def parse(self, response):方法。可以像这样重写start_requests方法,指定callback def login(self, response): cookie_jar = CookieJar() cookie_jar.extract_cookies(response, response.request) for k, v in cookie_jar._cookies.items(): for i, j in v.items(): for m, n in j.items(): self.cookie_dict[m] = n.value req = Request( url='http://dig.chouti.com/login', method='POST', headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}, body='phone=8615131255089&password=pppppppp&oneMonth=1', cookies=self.cookie_dict, callback=self.check_login # 指定回调函数 ) yield req def check_login(self, response): req = Request( url='http://dig.chouti.com/', method='GET', callback=self.show, # 定义callback cookies=self.cookie_dict, dont_filter=True # 不被去重过滤 ) yield req def show(self, response): # print(response) hxs = HtmlXPathSelector(response) # 实例化标签对象 news_list = hxs.select('//div[@id="content-list"]/div[@class="item"]') for new in news_list: # temp = new.xpath('div/div[@class="part2"]/@share-linkid').extract() link_id = new.xpath('*/div[@class="part2"]/@share-linkid').extract_first() # 获取id yield Request( # 点赞 url='http://dig.chouti.com/link/vote?linksId=%s' %(link_id,), method='POST', cookies=self.cookie_dict, callback=self.do_favor ) # 获取分页的网址 page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract() for page in page_list: page_url = 'http://dig.chouti.com%s' % page import hashlib hash = hashlib.md5() hash.update(bytes(page_url,encoding='utf-8')) key = hash.hexdigest() if key in self.has_request_set: # 加密key请求在已请求的列表中,则pass pass else: # 如果没有发送请求,继续发送 self.has_request_set[key] = page_url yield Request( url=page_url, method='GET', callback=self.show ) def do_favor(self, response): print(response.text) # 打印以下点赞之后的返回值
处理Cookie:
import scrapy from scrapy.http.response.html import HtmlResponse from scrapy.http import Request from scrapy.http.cookies import CookieJar class ChoutiSpider(scrapy.Spider): name = "chouti" allowed_domains = ["chouti.com"] start_urls = ( 'http://www.chouti.com/', ) def start_requests(self): url = 'http://dig.chouti.com/' yield Request(url=url, callback=self.login, meta={'cookiejar': True}) # 如此设置cookiejar,可以自动获取cookie def login(self, response): print(response.headers.getlist('Set-Cookie')) req = Request( url='http://dig.chouti.com/login', method='POST', headers={'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}, body='phone=8613121758648&password=woshiniba&oneMonth=1', callback=self.check_login, meta={'cookiejar': True} ) yield req def check_login(self, response): print(response.text)
注意:settings.py中设置DEPTH_LIMIT = 1来指定“递归”的层数。
这里对于上面的代码简单解释下,基础流程:
首先最初创建的爬虫应用的源码:继承了Spider类,该类内部有一个start_requests方法,这是爬虫执行的起始函数,如果start_urls不为空,爬取此url。即上图的yield Request(url, dont_filter=True)、这也可以解释为什么继续爬取分页的url时,写的是yield Request(url)。此时大家也许不明白,即start_urls不为空,为什么会执行parse函数呢?其实在开始执行的yield Request中有一个默认参数是callback=parse,所以初始化的爬虫应用的流程就一目了然了。
现在解释下点赞的爬虫,前面提到继承了Spider类,第一个执行的是start_requests,此时既然继承了父类Spider,就可以对此类进行重写,已经知道了其实位置是start_requests,毫无疑问重写此方法,内部指定url(外部的start_urls删除),执行爬虫则调用Request方法,指定callback函数,这样根据callback也就形成了一个串行爬虫链。另外要提到的一点yield都知道是一个生成器,在Scrapy内部,spider内部调度yield Request只是其中的一部分,用来爬虫。另外一部分也是通过yield调用来做持久化的,即对于爬取的数据的处理跟保存。下面会讲到这部分,这里先提一下。
5、格式化处理
之前的实例只是一些简单的处理,所以在parse方法中直接处理。如果想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。
回到最原始的parse代码,抓取以下热榜标题跟链接
chouti.py
import scrapy from scrapy.selector import HtmlXPathSelector, Selector from ..items import ScrapyTestItem class ChoutiSpider(scrapy.Spider): name = 'chouti' allowed_domains = ['chouti.com'] start_urls = ['http://dig.chouti.com/'] def parse(self, response): item_list = Selector(response=response).xpath('//div[@id="content-list"]/div[@class="item"]') for item in item_list: t = item.xpath('./div[@class="news-content"]//div[@class="part1"]/a/text()').extract() h = item.xpath('./div[@class="news-content"]//div[@class="part1"]/a/@href').extract() item_obj = ScrapyTestItem(title=t, href=h) # 调用Item yield item_obj # 这里指向了另一个调度器,持久化调度器
items.py
import scrapy class ScrapyTestItem(scrapy.Item): # define the fields for your item here like: 定义要抓取保存的字段 title = scrapy.Field() href = scrapy.Field()
pipelines.py
class ScrapyTestPipeline(object): def process_item(self, item, spider): print(item, spider) return item
这里需要注意的是跟Django一样,需要注册以下:
在settings文件里面找到下面这段话,去掉注释,其中300代表优先级,稍后进行这个数字的测试。
ITEM_PIPELINES = { 'scrapy_test.pipelines.ScrapyTestPipeline': 300, }
此时执行爬虫:
语法没写好,抓到2个href了,不要在意这些细节。
此时,了解了yield的另一个功能,当yield Item_obj是就会调度pipelines进行持久化,当然上面我们只是打印了以下结果,可以看到item对应的是字段,spider是爬虫应用函数方法。
所以对于不同的要求可以直接在pipelines里面写到:
class ScrapyTestPipeline1(object): def process_item(self, item, spider): print('step 1 输出到屏幕') return item class ScrapyTestPipeline2(object): def process_item(self, item, spider): print('step 2 保存到文件') return item class ScrapyTestPipeline3(object): def process_item(self, item, spider): print('step 3 保存到数据库') return item
注册以下:
ITEM_PIPELINES = { 'scrapy_test.pipelines.ScrapyTestPipeline1': 100, 'scrapy_test.pipelines.ScrapyTestPipeline2': 200, 'scrapy_test.pipelines.ScrapyTestPipeline3': 300, }
执行结果、注意顺序
假设step3的类没有注册,就只会执行step1 & step2。
那么、如果想在执行到某一个pipeline类终止怎么办?
from scrapy.exceptions import DropItem # 导入DropItem class ScrapyTestPipeline1(object): def process_item(self, item, spider): print('step 1 输出到屏幕') raise DropItem() class ScrapyTestPipeline2(object): def process_item(self, item, spider): print('step 2 保存到文件') return item class ScrapyTestPipeline3(object): def process_item(self, item, spider): print('step 3 保存到数据库') return item
那spider参数是干嘛用的呢?
假设,抓取的name是chouti的时候,不让其继续执行后续的:
from scrapy.exceptions import DropItem class ScrapyTestPipeline1(object): def process_item(self, item, spider): print('step 1 输出到屏幕') if spider.name == 'chouti': raise DropItem() return item class ScrapyTestPipeline2(object): def process_item(self, item, spider): print('step 2 保存到文件') return item class ScrapyTestPipeline3(object): def process_item(self, item, spider): print('step 3 保存到数据库') return item
pipelines更多:
假设需要将数据写入文件,首先想到的方法一定是
class ScrapyTestPipeline(object): def process_item(self, item, spider): with open('***', 'a+') as f: f.write('***') print('step 2 保存到文件') return item
但是这样会在一次爬虫中频繁的打开文件,浪费IO
此时引入另外的方法
from scrapy.exceptions import DropItem class CustomPipeline(object): def __init__(self,v): # v就是类方法返回的参数val self.value = v print(self.value) def process_item(self, item, spider): # 操作并进行持久化 # return表示会被后续的pipeline继续处理 print('****操作****') return item # 表示将item丢弃,不会被后续pipeline处理 # raise DropItem() @classmethod def from_crawler(cls, crawler): """ 初始化时候,用于创建pipeline对象 :param crawler: :return: """ val = crawler.settings.get('MYPATH') # 类方法获取配置文件参数 print(val) return cls(val) def open_spider(self,spider): """ 爬虫开始执行时,调用 :param spider: :return: """ print('000000') def close_spider(self,spider): """ 爬虫关闭时,被调用 :param spider: :return: """ print('111111')
此时在setting中配置以下文件地址就可以了:
MYPATH = '***path***'
settings参数必须全部大写,小写测试失败,未抓取到。
执行结果
所以以后,可以在from_crawler里面通过参数定义文件名,setting文件设置文件路径,然后打开文件,中间对文件句柄进行追加,一次打开,一次关闭,避免重复操作。
6、中间件
自动化里面Django blog其实已经讲过了中间件的一个大致流程,其实在scrapy中中间件的核心依然是同样的。
上图是Django中中间件的一个基本概念图,而在scrapy中则是:
爬虫中间件
class SpiderMiddleware(object): def process_spider_input(self,response, spider): """ 下载完成,执行,然后交给parse处理(默认有start_urls时,parse时默认的callback函数) :param response: :param spider: :return: """ pass def process_spider_output(self,response, result, spider): """ spider处理完成,返回时调用 :param response: :param result: :param spider: :return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable) """ return result def process_spider_exception(self,response, exception, spider): """ 异常调用 :param response: :param exception: :param spider: :return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline """ return None def process_start_requests(self,start_requests, spider): """ 爬虫启动时调用 :param start_requests: :param spider: :return: 包含 Request 对象的可迭代对象、丢给调度器分配下载或者是解析文本 """ return start_requests
首先爬虫引擎启动全局,到spider的start_urls抓取数据返回start_request,放到任务调度器里面,下载器去任务调度器抓取任务执行。
下载器中间件
class DownMiddleware1(object): def process_request(self, request, spider): """ 请求需要被下载时,经过所有下载器中间件的process_request调用 :param request: :param spider: :return: None,继续后续中间件去下载; Response对象,停止process_request的执行,开始执行process_response Request对象,停止中间件的执行,将Request重新调度器 raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception """ pass def process_response(self, request, response, spider): """ spider处理完成,返回时调用 :param response: :param result: :param spider: :return: Response 对象:转交给其他中间件process_response Request 对象:停止中间件,request会被重新调度下载 raise IgnoreRequest 异常:调用Request.errback """ print('response1') return response def process_exception(self, request, exception, spider): """ 当下载处理器(download handler)或 process_request() (下载中间件)抛出异常 :param response: :param exception: :param spider: :return: None:继续交给后续中间件处理异常; Response对象:停止后续process_exception方法 Request对象:停止中间件,request将会被重新调用下载 """ return None
7、自定制命令
a、在spiders同级创建任意目录,如:commands
b、在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)-- 如果创建多个文件,其实是相当于创建了多个命令
from scrapy.commands import ScrapyCommand from scrapy.utils.project import get_project_settings class Command(ScrapyCommand): requires_project = True def syntax(self): return '[options]' def short_desc(self): return 'Runs all of the spiders' def run(self, args, opts): spider_list = self.crawler_process.spiders.list() # 去spiders文件夹下获取所有的爬虫文件 for name in spider_list: self.crawler_process.crawl(name, **opts.__dict__) # 为所有的爬虫创建任务 self.crawler_process.start() # 并发的开始执行
c、在settings.py 中添加配置 COMMANDS_MODULE = '项目名称.目录名称'
d、在项目目录执行命令:scrapy crawlall
PS:scrapy的源码,建议从run开始着手看。
单个爬虫:
import sys from scrapy.cmdline import execute if __name__ == '__main__': execute(["scrapy","github","--nolog"])
8、自定义扩展
自定义扩展时,利用信号在指定位置注册制定操作(跟Django的信号很相似)
from scrapy import signals class MyExtension(object): def __init__(self, value): self.value = value @classmethod def from_crawler(cls, crawler): val = crawler.settings.get('MMMM') ext = cls(val) crawler.signals.connect(ext.openn, signal=signals.spider_opened) crawler.signals.connect(ext.closee, signal=signals.spider_closed) return ext def openn(self, spider): print('open') def closee(self, spider): print('close')
""" Scrapy signals These signals are documented in docs/topics/signals.rst. Please don't add new signals here without documenting them there. """ engine_started = object() engine_stopped = object() spider_opened = object() spider_idle = object() spider_closed = object() spider_error = object() request_scheduled = object() request_dropped = object() response_received = object() response_downloaded = object() item_scraped = object() item_dropped = object() # for backwards compatibility stats_spider_opened = spider_opened stats_spider_closing = spider_closed stats_spider_closed = spider_closed item_passed = item_scraped request_received = request_scheduled
跟pipelines一样,需要注册类在settings文件里。
9、避免重复访问
scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:
DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter' DUPEFILTER_DEBUG = False JOBDIR = "保存范文记录的日志路径,如:/root/" # 最终路径为 /root/requests.seen
class RepeatUrl: def __init__(self): self.visited_url = set() @classmethod def from_settings(cls, settings): """ 初始化时,调用 :param settings: :return: """ return cls() def request_seen(self, request): """ 检测当前请求是否已经被访问过 :param request: :return: True表示已经访问过;False表示未访问过 """ if request.url in self.visited_url: return True self.visited_url.add(request.url) return False def open(self): """ 开始爬去请求时,调用 :return: """ print('open replication') def close(self, reason): """ 结束爬虫爬取时,调用 :param reason: :return: """ print('close replication') def log(self, request, spider): """ 记录日志 :param request: :param spider: :return: """ print('repeat', request.url) 自定义URL去重操作
10、settings其他设置
# -*- coding: utf-8 -*- # Scrapy settings for step8_king project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html # 1. 爬虫名称 BOT_NAME = 'scrapy_test' # 2. 爬虫应用路径 SPIDER_MODULES = ['scrapy_test.spiders'] NEWSPIDER_MODULE = 'scrapy_test.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent # 3. 客户端 user-agent请求头 通用配置,也可以在Request内部配置 # USER_AGENT = 'scrapy_test (+http://www.yourdomain.com)' # Obey robots.txt rules # 4. 禁止爬虫配置 # ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) # 5. 并发请求数 # CONCURRENT_REQUESTS = 4 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs # 6. 延迟下载秒数(反爬虫,所有的爬虫都是延迟2秒) # DOWNLOAD_DELAY = 2 # The download delay setting will honor only one of: # 7. 单域名访问并发数,并且延迟下次秒数也应用在每个域名 # CONCURRENT_REQUESTS_PER_DOMAIN = 2 # 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP # CONCURRENT_REQUESTS_PER_IP = 3 # Disable cookies (enabled by default) # 8. 是否支持cookie,cookiejar进行操作cookie # COOKIES_ENABLED = True # COOKIES_DEBUG = True # Disable Telnet Console (enabled by default) # 9. Telnet用于查看当前爬虫的信息,操作爬虫等... # 使用telnet ip port ,然后通过命令操作 # TELNETCONSOLE_ENABLED = True # TELNETCONSOLE_HOST = '127.0.0.1' # TELNETCONSOLE_PORT = [6023,] # 10. 默认请求头 # Override the default request headers: # DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', # } # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html # 11. 定义pipeline处理请求 # ITEM_PIPELINES = { # 'scrapy_test.pipelines.JsonPipeline': 700, # 'scrapy_test.pipelines.FilePipeline': 500, # } # 12. 自定义扩展,基于信号进行调用 # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html # EXTENSIONS = { # # 'scrapy_test.extensions.MyExtension': 500, # } # 13. 爬虫允许的最大深度,可以通过meta查看当前深度;0表示无深度 # DEPTH_LIMIT = 3 # 14. 爬取时,0表示深度优先Lifo(默认);1表示广度优先FiFo # 后进先出,深度优先 # DEPTH_PRIORITY = 0 # SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleLifoDiskQueue' # SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.LifoMemoryQueue' # 先进先出,广度优先 # DEPTH_PRIORITY = 1 # SCHEDULER_DISK_QUEUE = 'scrapy.squeue.PickleFifoDiskQueue' # SCHEDULER_MEMORY_QUEUE = 'scrapy.squeue.FifoMemoryQueue' # 15. 调度器队列 queue # SCHEDULER = 'scrapy.core.scheduler.Scheduler' # from scrapy.core.scheduler import Scheduler # 16. 访问URL去重 # DUPEFILTER_CLASS = 'scrapy_test.duplication.RepeatUrl' # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html """ 17. 自动限速算法 from scrapy.contrib.throttle import AutoThrottle 自动限速设置 1. 获取最小延迟 DOWNLOAD_DELAY 2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY 3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY 4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间 5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCY target_delay = latency / self.target_concurrency new_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间 new_delay = max(target_delay, new_delay) new_delay = min(max(self.mindelay, new_delay), self.maxdelay) slot.delay = new_delay """ # 开始自动限速 # AUTOTHROTTLE_ENABLED = True # The initial download delay # 初始下载延迟 # AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies # 最大下载延迟 # AUTOTHROTTLE_MAX_DELAY = 10 # The average number of requests Scrapy should be sending in parallel to each remote server # 平均每秒并发数 # AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: # 是否显示 # AUTOTHROTTLE_DEBUG = True # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings """ 18. 启用缓存 目的用于将已经发送的请求或相应缓存下来,以便以后使用 from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddleware from scrapy.extensions.httpcache import DummyPolicy from scrapy.extensions.httpcache import FilesystemCacheStorage """ # 是否启用缓存策略 # HTTPCACHE_ENABLED = True # 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可 # HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy" # 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略 # HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy" # 缓存超时时间 # HTTPCACHE_EXPIRATION_SECS = 0 # 缓存保存路径 # HTTPCACHE_DIR = 'httpcache' # 缓存忽略的Http状态码 # HTTPCACHE_IGNORE_HTTP_CODES = [] # 缓存存储的插件 # HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' """ 19. 代理,需要在环境变量中设置 from scrapy.contrib.downloadermiddleware.httpproxy import HttpProxyMiddleware 方式一:使用默认,key不可以修改 os.environ { http_proxy:http://root:woshiniba@192.168.11.11:9999/ https_proxy:http://192.168.11.11:9999/ } 方式二:使用自定义下载中间件 def to_bytes(text, encoding=None, errors='strict'): if isinstance(text, bytes): return text if not isinstance(text, six.string_types): raise TypeError('to_bytes must receive a unicode, str or bytes ' 'object, got %s' % type(text).__name__) if encoding is None: encoding = 'utf-8' return text.encode(encoding, errors) class ProxyMiddleware(object): def process_request(self, request, spider): PROXIES = [ {'ip_port': '111.11.228.75:80', 'user_pass': ''}, {'ip_port': '120.198.243.22:80', 'user_pass': ''}, {'ip_port': '111.8.60.9:8123', 'user_pass': ''}, {'ip_port': '101.71.27.120:80', 'user_pass': ''}, {'ip_port': '122.96.59.104:80', 'user_pass': ''}, {'ip_port': '122.224.249.122:8088', 'user_pass': ''}, ] proxy = random.choice(PROXIES) if proxy['user_pass'] is not None: request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port']) encoded_user_pass = base64.encodestring(to_bytes(proxy['user_pass'])) request.headers['Proxy-Authorization'] = to_bytes('Basic ' + encoded_user_pass) print "**************ProxyMiddleware have pass************" + proxy['ip_port'] else: print "**************ProxyMiddleware no pass************" + proxy['ip_port'] request.meta['proxy'] = to_bytes("http://%s" % proxy['ip_port']) DOWNLOADER_MIDDLEWARES = { 'step8_king.middlewares.ProxyMiddleware': 500, } """ """ 20. Https访问 Https访问时有两种情况: 1. 要爬取网站使用的可信任证书(默认支持) DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory" DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy.core.downloader.contextfactory.ScrapyClientContextFactory" 2. 要爬取网站使用的自定义证书 DOWNLOADER_HTTPCLIENTFACTORY = "scrapy.core.downloader.webclient.ScrapyHTTPClientFactory" DOWNLOADER_CLIENTCONTEXTFACTORY = "scrapy_test.https.MySSLFactory" # https.py from scrapy.core.downloader.contextfactory import ScrapyClientContextFactory from twisted.internet.ssl import (optionsForClientTLS, CertificateOptions, PrivateCertificate) class MySSLFactory(ScrapyClientContextFactory): def getCertificateOptions(self): from OpenSSL import crypto v1 = crypto.load_privatekey(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.key.unsecure', mode='r').read()) v2 = crypto.load_certificate(crypto.FILETYPE_PEM, open('/Users/wupeiqi/client.pem', mode='r').read()) return CertificateOptions( privateKey=v1, # pKey对象 certificate=v2, # X509对象 verify=False, method=getattr(self, 'method', getattr(self, '_ssl_method', None)) ) 其他: 相关类 scrapy.core.downloader.handlers.http.HttpDownloadHandler scrapy.core.downloader.webclient.ScrapyHTTPClientFactory scrapy.core.downloader.contextfactory.ScrapyClientContextFactory 相关配置 DOWNLOADER_HTTPCLIENTFACTORY DOWNLOADER_CLIENTCONTEXTFACTORY """ """ 21. 爬虫中间件 class SpiderMiddleware(object): def process_spider_input(self,response, spider): ''' 下载完成,执行,然后交给parse处理 :param response: :param spider: :return: ''' pass def process_spider_output(self,response, result, spider): ''' spider处理完成,返回时调用 :param response: :param result: :param spider: :return: 必须返回包含 Request 或 Item 对象的可迭代对象(iterable) ''' return result def process_spider_exception(self,response, exception, spider): ''' 异常调用 :param response: :param exception: :param spider: :return: None,继续交给后续中间件处理异常;含 Response 或 Item 的可迭代对象(iterable),交给调度器或pipeline ''' return None def process_start_requests(self,start_requests, spider): ''' 爬虫启动时调用 :param start_requests: :param spider: :return: 包含 Request 对象的可迭代对象 ''' return start_requests 内置爬虫中间件: 'scrapy.contrib.spidermiddleware.httperror.HttpErrorMiddleware': 50, 'scrapy.contrib.spidermiddleware.offsite.OffsiteMiddleware': 500, 'scrapy.contrib.spidermiddleware.referer.RefererMiddleware': 700, 'scrapy.contrib.spidermiddleware.urllength.UrlLengthMiddleware': 800, 'scrapy.contrib.spidermiddleware.depth.DepthMiddleware': 900, """ # from scrapy.contrib.spidermiddleware.referer import RefererMiddleware # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html SPIDER_MIDDLEWARES = { # 'scrapy_test.middlewares.SpiderMiddleware': 543, } """ 22. 下载中间件 class DownMiddleware1(object): def process_request(self, request, spider): ''' 请求需要被下载时,经过所有下载器中间件的process_request调用 :param request: :param spider: :return: None,继续后续中间件去下载; Response对象,停止process_request的执行,开始执行process_response Request对象,停止中间件的执行,将Request重新调度器 raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception ''' pass def process_response(self, request, response, spider): ''' spider处理完成,返回时调用 :param response: :param result: :param spider: :return: Response 对象:转交给其他中间件process_response Request 对象:停止中间件,request会被重新调度下载 raise IgnoreRequest 异常:调用Request.errback ''' print('response1') return response def process_exception(self, request, exception, spider): ''' 当下载处理器(download handler)或 process_request() (下载中间件)抛出异常 :param response: :param exception: :param spider: :return: None:继续交给后续中间件处理异常; Response对象:停止后续process_exception方法 Request对象:停止中间件,request将会被重新调用下载 ''' return None 默认下载中间件 { 'scrapy.contrib.downloadermiddleware.robotstxt.RobotsTxtMiddleware': 100, 'scrapy.contrib.downloadermiddleware.httpauth.HttpAuthMiddleware': 300, 'scrapy.contrib.downloadermiddleware.downloadtimeout.DownloadTimeoutMiddleware': 350, 'scrapy.contrib.downloadermiddleware.useragent.UserAgentMiddleware': 400, 'scrapy.contrib.downloadermiddleware.retry.RetryMiddleware': 500, 'scrapy.contrib.downloadermiddleware.defaultheaders.DefaultHeadersMiddleware': 550, 'scrapy.contrib.downloadermiddleware.redirect.MetaRefreshMiddleware': 580, 'scrapy.contrib.downloadermiddleware.httpcompression.HttpCompressionMiddleware': 590, 'scrapy.contrib.downloadermiddleware.redirect.RedirectMiddleware': 600, 'scrapy.contrib.downloadermiddleware.cookies.CookiesMiddleware': 700, 'scrapy.contrib.downloadermiddleware.httpproxy.HttpProxyMiddleware': 750, 'scrapy.contrib.downloadermiddleware.chunked.ChunkedTransferMiddleware': 830, 'scrapy.contrib.downloadermiddleware.stats.DownloaderStats': 850, 'scrapy.contrib.downloadermiddleware.httpcache.HttpCacheMiddleware': 900, } """ # from scrapy.contrib.downloadermiddleware.httpauth import HttpAuthMiddleware # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # DOWNLOADER_MIDDLEWARES = { # 'scrapy_test.middlewares.DownMiddleware1': 100, # 'scrapy_test.middlewares.DownMiddleware2': 500, # }
11、模拟scrapy框架
#!/usr/bin/env python # -*- coding:utf-8 -*- from twisted.web.client import getPage, defer from twisted.internet import reactor import queue class Response(object): def __init__(self, body, request): self.body = body self.request = request self.url = request.url @property def text(self): return self.body.decode('utf-8') class Request(object): def __init__(self, url, callback=None): self.url = url self.callback = callback class Scheduler(object): def __init__(self, engine): self.q = queue.Queue() self.engine = engine def enqueue_request(self, request): self.q.put(request) def next_request(self): try: req = self.q.get(block=False) except Exception as e: req = None return req def size(self): return self.q.qsize() class ExecutionEngine(object): def __init__(self): self._closewait = None self.running = True self.start_requests = None self.scheduler = Scheduler(self) self.inprogress = set() def check_empty(self, response): if not self.running: self._closewait.callback('......') def _next_request(self): while self.start_requests: try: request = next(self.start_requests) except StopIteration: self.start_requests = None else: self.scheduler.enqueue_request(request) while len(self.inprogress) < 5 and self.scheduler.size() > 0: # 最大并发数为5 request = self.scheduler.next_request() if not request: break self.inprogress.add(request) d = getPage(bytes(request.url, encoding='utf-8')) d.addBoth(self._handle_downloader_output, request) d.addBoth(lambda x, req: self.inprogress.remove(req), request) d.addBoth(lambda x: self._next_request()) if len(self.inprogress) == 0 and self.scheduler.size() == 0: self._closewait.callback(None) def _handle_downloader_output(self, body, request): """ 获取内容,执行回调函数,并且把回调函数中的返回值获取,并添加到队列中 :param response: :param request: :return: """ import types response = Response(body, request) func = request.callback or self.spider.parse gen = func(response) if isinstance(gen, types.GeneratorType): for req in gen: self.scheduler.enqueue_request(req) @defer.inlineCallbacks def start(self): self._closewait = defer.Deferred() yield self._closewait def open_spider(self, spider, start_requests): self.start_requests = start_requests self.spider = spider reactor.callLater(0, self._next_request) class Crawler(object): def __init__(self, spidercls): self.spidercls = spidercls self.spider = None self.engine = None @defer.inlineCallbacks def crawl(self): self.engine = ExecutionEngine() self.spider = self.spidercls() start_requests = iter(self.spider.start_requests()) start_requests = iter(start_requests) self.engine.open_spider(self.spider, start_requests) yield self.engine.start() class CrawlerProcess(object): def __init__(self): self._active = set() self.crawlers = set() def crawl(self, spidercls, *args, **kwargs): crawler = Crawler(spidercls) self.crawlers.add(crawler) d = crawler.crawl(*args, **kwargs) self._active.add(d) return d def start(self): dl = defer.DeferredList(self._active) dl.addBoth(self._stop_reactor) reactor.run() def _stop_reactor(self, _=None): reactor.stop() class Spider(object): def start_requests(self): for url in self.start_urls: yield Request(url) class ChoutiSpider(Spider): name = "chouti" start_urls = [ 'http://dig.chouti.com/', ] def parse(self, response): print(response.text) class CnblogsSpider(Spider): name = "cnblogs" start_urls = [ 'http://www.cnblogs.com/', ] def parse(self, response): print(response.text) if __name__ == '__main__': spider_cls_list = [ChoutiSpider, CnblogsSpider] crawler_process = CrawlerProcess() for spider_cls in spider_cls_list: crawler_process.crawl(spider_cls) crawler_process.start()
参见文档:http://www.cnblogs.com/wupeiqi/articles/6229292.html