机器学习 | 支持向量机(SVM)的原理

【关键词】支持向量,最大几何间隔,拉格朗日乘子法

一、支持向量机的原理

  Support Vector Machine。支持向量机,其含义是通过支持向量运算的分类器。其中“机”的意思是机器,可以理解为分类器。 那么什么是支持向量呢?在求解的过程中,会发现只根据部分数据就可以确定分类器,这些数据称为支持向量。 通常SVM用于二元分类问题,对于多元分类通常将其分解为多个二元分类问题,再进行分类,主要的应用场景有字符识别、面部识别、行人检测、文本分类、生物信息学等领域。
  见下图,在一个二维环境中,其中点R,S,G点和其它靠近中间黑线的点可以看作为支持向量,它们可以决定分类器,也就是黑线的具体参数。
1.png
解决的问题:
  • 线性分类
在训练数据中,每个数据都有n个的属性和一个二类类别标志,我们可以认为这些数据在一个n维空间里。我们的目标是找到一个n-1维的超平面(hyperplane),这个超平面可以将数据分成两部分,每部分数据都属于同一个类别。 其实这样的超平面有很多,我们要找到一个最佳的。因此,增加一个约束条件:这个超平面到每边最近数据点的距离是最大的。也成为最大间隔超平面(maximum-margin hyperplane)。这个分类器也成为最大间隔分类器(maximum-margin classifier)。 支持向量机是一个二类分类器。
  • 非线性分类
SVM的一个优势是支持非线性分类。它结合使用拉格朗日乘子法和KKT条件,以及核函数可以产生非线性分类器。
SVM的目的是要找到一个线性分类的最佳超平面 f(x)=xw+b=0。求 w 和 b。
首先通过两个分类的最近点,找到f(x)的约束条件。
有了约束条件,就可以通过拉格朗日乘子法和KKT条件来求解,这时,问题变成了求拉格朗日乘子αi 和 b。
对于异常点的情况,加入松弛变量ξ来处理。
非线性分类的问题:映射到高维度、使用核函数。

线性分类及其约束条件

SVM的解决问题的思路是找到离超平面的最近点,通过其约束条件求出最优解。
3.png
4.PNG

最大几何间隔(geometrical margin)

5.PNG

求解问题w,b

我们使用拉格朗日乘子法(http://blog.csdn.net/on2way/article/details/47729419) 来求w和b,一个重要原因是使用拉格朗日乘子法后,还可以解决非线性划分问题。 拉格朗日乘子法可以解决下面这个问题:
6.PNG
消除w之后变为:
7.PNG
可见使用拉格朗日乘子法后,求w,b的问题变成了求拉格朗日乘子αi和b的问题。 到后面更有趣,变成了不求w了,因为αi可以直接使用到分类器中去,并且可以使用αi支持非线性的情况.
 

二、支持向量机的优缺点

优点:

(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;

(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;

(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。

(4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。

(5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。

(6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在:

①增、删非支持向量样本对模型没有影响;

②支持向量样本集具有一定的鲁棒性;

③有些成功的应用中,SVM 方法对核的选取不敏感

缺点:

(1) SVM算法对大规模训练样本难以实施

由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法

(2) 用SVM解决多分类问题存在困难

经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。

posted @ 2020-05-06 12:08  少年阿成  阅读(547)  评论(0编辑  收藏  举报