Boosting 集成算法中Adaboost、GBDT与XGBoost的区别

  所谓集成学习,是指构建多个分类器(弱分类器)对数据集进行预测,然后用某种策略将多个分类器预测的结果集成起来,作为最终预测结果。通俗比喻就是“三个臭皮匠赛过诸葛亮”,或一个公司董事会上的各董事投票决策,它要求每个弱分类器具备一定的“准确性”,分类器之间具备“差异性”。

Bagging和Boosting的区别

1)样本选择上:

Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。

Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。

2)样例权重:

Bagging:使用均匀取样,每个样例的权重相等

Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。

3)预测函数:

Bagging:所有预测函数的权重相等。

Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。

4)并行计算:

Bagging:各个预测函数可以并行生成

Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。

Adaboost

介绍

  AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。该算法是一种典型的boosting算法。
 
  具体说来,整个Adaboost 迭代算法就3步:
  1. 初始化训练数据的权值分布。如果有N个样本,则每一个训练样本最开始时都被赋予相同的权值:1/N。
  2. 训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地分类,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
  3. 将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。

优点

1. Adaboost是一种有很高精度的分类器;

2. 可以使用各种方法构建子分类器,Adaboost算法提供的是框架;

3. 当使用简单分类器时,计算出的结果是可以理解的,并且弱分类器的构造极其简单;

4. 简单,不用做特征筛选;

5. 不易发生overfitting(过拟合)。

缺点

1. 对outlier(离群值)比较敏感。

2. AdaBoost迭代次数也就是弱分类器数目不太好设定,可以使用交叉验证来进行确定;

3. 训练比较耗时,每次重新选择当前分类器最好切分点。

应用领域:

模式识别、计算机视觉领域,用于二分类和多分类场景

权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。

GBDT(Gradient Boost Decision Tree)

介绍

  另一种boosting方法GBDT(Gradient Boost Decision Tree),则与AdaBoost不同,GBDT每一次的计算是都为了减少上一次的残差,进而在残差减少(负梯度)的方向上建立一个新的模型。
  boosting集成学习由多个相关联的决策树联合决策,什么叫相关联?举个例子
有一个样本[数据->标签]是:[(2,4,5)-> 4]
第一棵决策树用这个样本训练的预测为3.3
那么第二棵决策树训练时的输入,这个样本就变成了:[(2,4,5)-> 0.7]
也就是说,下一棵决策树输入样本会与前面决策树的训练和预测相关。
 
  而一个回归树形成的关键点在于:
分裂点依据什么来划分(如前面说的均方误差最小,loss);
分类后的节点预测值是多少(如前面说,有一种是将叶子节点下各样本实际值得均值作为叶子节点预测误差,或者计算所得)
至于另一类集成学习方法,比如Random Forest(随机森林)算法,各个决策树是独立的、每个决策树在样本堆里随机选一批样本,随机选一批特征进行独立训练,各个决策树之间没有啥关系。本文暂不展开介绍。
说到Xgboost,不得不先从GBDT(Gradient Boosting Decision Tree)说起。而且前面说过,两者都是boosting方法(如图所示:Y = Y1 + Y2 + Y3)
 
咱们来看个年龄预测的例子。
简单起见,假定训练集只有4个人:A,B,C,D,他们的年龄分别是14,16,24,26。其中A、B分别是高一和高三学生;C,D分别是应届毕业生和工作两年的员工。
如果是用一棵传统的回归决策树来训练,会得到如下图所示结果:
现在我们使用GBDT来做这件事,由于数据太少,我们限定叶子节点最多有两个,即每棵树都只有一个分枝,并且限定只学两棵树。
我们会得到如下图所示结果:

 

 

  在第一棵树分枝和图1一样,由于A,B年龄较为相近,C,D年龄较为相近,他们被分为左右两拨,每拨用平均年龄作为预测值。
  此时计算残差(残差的意思就是:A的实际值 - A的预测值 = A的残差),所以A的残差就是实际值14 - 预测值15 = 残差值-1。
  注意,A的预测值是指前面所有树累加的和,这里前面只有一棵树所以直接是15,如果还有树则需要都累加起来作为A的预测值。
  残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。“残差”蕴含了有关模型基本假设的重要信息。如果回归模型正确的话, 我们可以将残差看作误差的观测值。
  进而得到A,B,C,D的残差分别为-1,1,-1,1。
  然后拿它们的残差代替A B C D的原值-1、1、-1、1,到第二棵树去学习,第二棵树只有两个值1和-1,直接分成两个节点,即A和C分在左边,B和D分在右边,经过计算(比如A,实际值-1 - 预测值-1 = 残差0,比如C,实际值-1 - 预测值-1 = 0),此时所有人的残差都是0。
  残差值都为0,相当于第二棵树的预测值和它们的实际值相等,则只需把第二棵树的结论累加到第一棵树上就能得到真实年龄了,即每个人都得到了真实的预测值。
  换句话说,现在A,B,C,D的预测值都和真实年龄一致了。Perfect!
A: 14岁高一学生,购物较少,经常问学长问题,预测年龄A = 15 – 1 = 14
B: 16岁高三学生,购物较少,经常被学弟问问题,预测年龄B = 15 + 1 = 16
C: 24岁应届毕业生,购物较多,经常问师兄问题,预测年龄C = 25 – 1 = 24
D: 26岁工作两年员工,购物较多,经常被师弟问问题,预测年龄D = 25 + 1 = 26

优点:

  1. 预测精度高
  2. 适合低维数据
  3. 能处理非线性数据
  4. 可以灵活处理各种类型的数据,包括连续值和离散值。
  5. 在相对少的调参时间情况下,预测的准备率也可以比较高。这个是相对SVM来说的。
  6. 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

缺点:

  1. 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。
  2. 如果数据维度较高时会加大算法的计算复杂度

XGBoost

XGBoost树的定义

本节的示意图基本引用自xgboost原作者陈天奇的讲座PPT中。
举个例子,我们要预测一家人谁是谁,则可以先通过年龄区分开小孩和大人,然后再通过性别区分开是男是女,如下图所示。
 

 

就这样,训练出了2棵树tree1和tree2,类似之前gbdt的原理,两棵树的结论累加起来便是最终的结论,所以小孩的预测分数就是两棵树中小孩所落到的结点的分数相加:2 + 0.9 = 2.9。爷爷的预测分数同理:-1 + (-0.9)= -1.9。具体如下图所示

 

 

恩,你可能要拍案而起了,惊呼,这不是跟上文介绍的gbdt乃异曲同工么?
事实上,如果不考虑工程实现、解决问题上的一些差异,xgboost与gbdt比较大的不同就是目标函数的定义。
XGBoost的目标函数如下图所示:

 

 

  其中红色箭头所指向的L 即为损失函数(比如平方损失函数:,或logistic损失函数或hinge损失函数或者自定义的损失函数(调用XGBoost包时候则需要输入该自定义损失函数的一阶、二阶损失函数)
  红色方框所框起来的是正则项(包括L1正则、L2正则)
  红色圆圈所圈起来的为常数项
  对于f(x),xgboost利用泰勒展开三项,做一个近似
  我们可以很清晰地看到,最终的目标函数只依赖于每个数据点的在误差函数上的一阶导数和二阶导数。
  额,峰回路转,突然丢这么大一个公式,不少人可能瞬间就懵了。没事,下面,咱们来拆接下这个目标函数。

XGBoost目标函数

  首先,再次明确下我们的目标,是希望建立K个回归树,使得树群的预测值尽量接近真实值(准确率)而且有尽量大的泛化能力(更为本质的东西)。
  从数学角度看这是一个泛函最优化,多目标,把目标函数简化下:

 

  T表示叶子节点的个数,w表示节点的数值。直观上看,目标要求预测误差尽量小,且叶子节点T尽量少,节点数值w尽量不极端。
  插一句,一般的目标函数都包含下面两项
  其中,误差函数鼓励我们的模型尽量去拟合训练数据,使得最后的模型会有比较少的 bias。而正则化项则鼓励更加简单的模型。因为当模型简单之后,有限数据拟合出来结果的随机性比较小,不容易过拟合,使得最后模型的预测更加稳定。
 

优点:

1)GBDT以传统CART作为基分类器,而xgBoosting支持线性分类器,相当于引入L1和L2正则化项的逻辑回归(分类问题)和线性回归(回归问题);

2)GBDT在优化时只用到一阶导数,xgBoosting对代价函数做了二阶Talor展开,引入了一阶导数和二阶导数;

3)当样本存在缺失值是,xgBoosting能自动学习分裂方向;

4)xgBoosting借鉴RF的做法,支持列抽样,这样不仅能防止过拟合,还能降低计算;

5)xgBoosting的代价函数引入正则化项,控制了模型的复杂度,正则化项包含全部叶子节点的个数,每个叶子节点输出的score的L2模的平方和。从贝叶斯方差角度考虑,正则项降低了模型的方差,防止模型过拟合;

6)xgBoosting在每次迭代之后,为叶子结点分配学习速率,降低每棵树的权重,减少每棵树的影响,为后面提供更好的学习空间;

缺点:

1)xgBoosting采用预排序,在迭代之前,对结点的特征做预排序,遍历选择最优分割点,数据量大时,贪心法耗时,LightGBM方法采用histogram算法,占用的内存低,数据分割的复杂度更低;

2)xgBoosting采用level-wise生成决策树,同时分裂同一层的叶子,从而进行多线程优化,不容易过拟合,但很多叶子节点的分裂增益较低,没必要进行跟进一步的分裂,这就带来了不必要的开销;

总结:

  • Adaboost与GBDT两者boosting的不同策略是两者的本质区别。
  • Adaboost强调Adaptive(自适应),通过不断修改样本权重(增大分错样本权重,降低分对样本权重),不断加入弱分类器进行boosting。
  • 而GBDT则是旨在不断减少残差(回归),通过不断加入新的树旨在在残差减少(负梯度)的方向上建立一个新的模型。——即损失函数是旨在最快速度降低残差。
  • 而XGBoost的boosting策略则与GBDT类似,区别在于GBDT旨在通过不断加入新的树最快速度降低残差,而XGBoost则可以人为定义损失函数(可以是最小平方差、logistic loss function、hinge loss function或者人为定义的loss function),只需要知道该loss function对参数的一阶、二阶导数便可以进行boosting,其进一步增大了模型的泛华能力,其贪婪法寻找添加树的结构以及loss function中的损失函数与正则项等一系列策略也使得XGBoost预测更准确。
  • XGBoost的具体策略可参考本专栏的XGBoost详述。 GBDT每一次的计算是都为了减少上一次的残差,进而在残差减少(负梯度)的方向上建立一个新的模型。
  • XGBoost则可以自定义一套损失函数,借助泰勒展开(只需知道损失函数的一阶、二阶导数即可求出损失函数)转换为一元二次函数,得到极值点与对应极值即为所求。

 

 

posted @ 2020-05-05 23:13  少年阿成  阅读(441)  评论(0编辑  收藏  举报