关于数据区间变换及numpy数组转图片数据的python实现

python实现区间转换、numpy图片数据转换

需求:

客户的需求是永无止境的,这不?前几天,用户提出了一个需求,需要将一组数据从一个区间缩放到另一区间?

 

思路:

先将数据归一化,再乘以对应区间的差加上对于区间下限。

数据归一化的公式:

 

# 区间变换
def unification_interval(data,interval_min,interval_max):
    # data         :需要变换的数据或矩阵
    # interval_min :变换区间下限。
    # interval_max :变换区间上限。
    import numpy as np
    data = np.array(data)
    n,m = data.shape
    minval = np.min(np.min(data))
    maxval = np.max(np.max(data))
    for i in range(n):
        for j in range(m):
            data[i,j] = (data[i,j]-minval)/(maxval-minval)
    return data*(interval_max-interval_min)+interval_min
# 整形的转换
def
Inter(data): import numpy as np data = np.array(data) n,m = data.shape for i in range(n): for j in range(m): data[i,j] = int(data[i,j]) return data

 

# coding:utf-8
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.misc import imresize

# 区间变换
def unification_interval(data,interval_min,interval_max):
    # data         :需要变换的数据或矩阵
    # interval_min :变换区间下限。
    # interval_max :变换区间上限。
    import numpy as np
    data = np.array(data)
    n,m = data.shape
    minval = np.min(np.min(data))
    maxval = np.max(np.max(data))
    for i in range(n):
        for j in range(m):
            data[i,j] = (data[i,j]-minval)/(maxval-minval)
    return data*(interval_max-interval_min)+interval_min

def Inter(data):
    import numpy as np 
    data = np.array(data)
    n,m = data.shape
    for i in range(n):
        for j in range(m):
            data[i,j] = int(data[i,j])
    return data

# 图片读入
img_data = pd.read_csv('./data/milliq.csv',header=0,index_col=0,sep=',')
# print(np.max(np.max(img_data)))
# print(np.min(np.min(img_data)))

data = Inter(img_data)

imgData = unification_interval(data,0,255)

# print(np.max(np.max(imgData)),np.min(np.min(imgData)))

data = imresize(data,[200,200])

plt.imshow(data,cmap='gray')
plt.show()

 

posted @ 2018-08-25 21:41  洺剑残虹  阅读(1968)  评论(0编辑  收藏  举报