神经网络dnn 多分类模型
import tensorflow.compat.v1 as tf # from tensorflow.examples.tutorials.mnist import input_data import os import pandas as pd import numpy as np from tensorflow.python.keras.utils import to_categorical os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 数据准备 df = pd.read_csv('./data/train_date_new.csv',sep=',',index_col=None,header=0) # print(df) # print(df.groupby(by="diabete").count()) X = df.iloc[:,1:].values.astype(np.float32) Y = to_categorical(df.iloc[:,0].values).astype(np.float32) print(X.shape,Y.shape) train_split = int(df.shape[0]*0.8) x_train,y_train,x_test,y_test = X[:train_split,:],Y[:train_split,:],X[train_split:,:],Y[train_split:,:] ind,col = x_train.shape y_ind,y_col = y_train.shape # 全连接神经网络 def dense(x, w, b, keeppord): linear = tf.matmul(x, w) + b # activation = tf.nn.relu(linear) activation = tf.nn.sigmoid(linear) # activation = tf.nn.tanh(linear) # activation = tf.nn.softmax(linear) y = tf.nn.dropout(activation,keeppord) return y def DNNModel(image, w, b, keeppord): global dense1 for i in range(len(w)-1): if i==0: dense1 = dense(image, w[i], b[i],keeppord) else: dense1 = dense(dense1, w[i], b[i],keeppord) output = tf.matmul(dense1, w[-1]) + b[-1] return output # 生成网络的权重 def gen_weights(unit_list): w = [] b = [] # 遍历层数 for i in range(len(unit_list)-1): sub_w = tf.Variable(tf.random_normal(shape=[unit_list[i], unit_list[i+1]])) sub_b = tf.Variable(tf.random_normal(shape=[1,unit_list[i+1]])) w.append(sub_w) b.append(sub_b) return w, b x = tf.placeholder(tf.float32, [None, col]) y = tf.placeholder(tf.float32, [None, y_col]) keepprob = tf.placeholder(tf.float32) global_step = tf.Variable(0) # unit_list = [784, 512, 256, 10] unit_list = [col, 512,256, y_col] # 0.7543333 # unit_list = [col,1024,512,y_col] duropt = 0.75 w, b = gen_weights(unit_list) y_pre = DNNModel(x, w, b, keepprob) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=y_pre, labels=y)) tf.summary.scalar("loss", loss) # 收集标量 opt = tf.train.AdamOptimizer(0.01).minimize(loss, global_step=global_step) predict = tf.equal(tf.argmax(y_pre, axis=1), tf.argmax(y, axis=1)) # 返回每行或者每列最大值的索引,判断是否相等 acc = tf.reduce_mean(tf.cast(predict, tf.float32)) tf.summary.scalar("acc", acc) # 收集标量 merged = tf.summary.merge_all() # 和并变量 saver = tf.train.Saver() # 保存和加载模型 init = tf.global_variables_initializer() # 初始化全局变量 bach = 4 bach_0=bach-1 min_bach = int(ind/4) print(bach_0,min_bach) with tf.Session() as sess: sess.run(init) writer = tf.summary.FileWriter("./log/tensorboard", tf.get_default_graph()) # tensorboard 事件文件 for i in range(10000): for j in range(bach): if j <= bach_0: x_train_bach, y_train_bach = x_train[(j * min_bach):(j + 1) * min_bach, :],\ y_train[(j * min_bach):(j + 1) * min_bach,:] else: x_train_bach, y_train_bach = x_train[(j + 1) * min_bach:, :], y_train[(j + 1) * min_bach:, :] summary, _ = sess.run([merged, opt], feed_dict={x:x_train_bach, y:y_train_bach, keepprob: duropt}) writer.add_summary(summary, i) # 将每次迭代后的变量写入事件文件 # 评估模型在验证集上的识别率 if (i+1) % 1000 == 0: feeddict = {x: x_test, y: y_test, keepprob: 1.} # 验证集 valloss, accuracy = sess.run([loss, acc], feed_dict=feeddict) print(i, 'th batch val loss:', valloss, ', accuracy:', accuracy) saver.save(sess, './model/tfdnn.ckpt') # 保存模型 print('测试集准确度:', sess.run(acc, feed_dict={x:x_test, y:y_test, keepprob:1.})) writer.close()
https://gitcode.net/ImageVision1/ImageVision
自动化学习。