scala spark2.0 rdd dataframe 分布式计算欧式距离

1、配置文件

package config
import org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}
case object conf {
   private val master = "local[*]"
   val confs: SparkConf = new SparkConf().setMaster(master).setAppName("jobs")
//   val confs: SparkConf = new SparkConf().setMaster("http://laptop-2up1s8pr:4040/").setAppName("jobs")
   val sc = new SparkContext(confs)
   sc.setLogLevel("ERROR")
   val spark_session: SparkSession = SparkSession.builder()
    .appName("jobs").config(confs).getOrCreate()

//   设置支持笛卡尔积 对于spark2.0来说
   spark_session.conf.set("spark.sql.crossJoin.enabled",true)
}

  

2、欧式距离计算

package classifierAlg
import config.conf.{sc, spark_session}
import config.conf.spark_session.implicits._
import org.apache.spark.sql.functions._
import breeze.linalg._
import breeze.numerics._
import org.apache.log4j.{Level, Logger}
import org.apache.parquet.schema.Types.ListBuilder
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{StructField, _}
import org.apache.spark.sql.{Column, DataFrame, Row}

import scala.collection.mutable.ListBuffer
object euclideanDist {

  def testFeature(): DataFrame ={
    val someData: Seq[Row] = Seq(Row(5.1, 3.8, 1.6, 0.2, 1.0))

    val someSchema = List(
      StructField("dt1", DoubleType, true),
      StructField("dt2", DoubleType, true),
      StructField("dt3", DoubleType, true),
      StructField("dt4", DoubleType, true),
      StructField("dt5", DoubleType, true)
    )


    val dt1: DataFrame = spark_session.createDataFrame(
      sc.parallelize(someData),
      StructType(someSchema)
    )
    dt1

  }

  def euclideanDisting(): Unit ={
    //矩阵及向量操作:https://blog.csdn.net/hellozhxy/article/details/82852561

    val path:String = "data/irsdf/part-00000-ca2d6ce7-bcd0-4c24-aba9-e8cb01dcc04c-c000.csv"
    val df: DataFrame = spark_session.read.csv(path).toDF("ft1","ft2","ft3","ft4","label")
    val cols: Array[String] = df.columns
    val n: Int = cols.length
    //     val colNames : Array[String] = df.schema.fieldNames
    val colsd: Array[Column] = cols.map(f => df(f).cast(DoubleType))
    val df2: DataFrame = df.select(colsd: _*)
    println(df2.count())


    //测试特征量
    val tfter:Array[Double] =Array(5.1,3.5,1.4,0.2,1.0)

    val nl:Int = tfter.length

    //计算欧式距离
    val df3: RDD[Double] = df2.rdd.map(row => {
      var sg: Double = 0D
      for (i <- 0 until nl) {
        sg += math.pow(row(i).toString.toDouble - tfter(i).toString.toDouble, 2)
      }
      math.sqrt(sg)
    })
    df3.toDF("dist").where("dist < 0.2").show()
//    df3.toDF("dist")show()
    

  }

  def main(args: Array[String]): Unit = {

    /*
    val fs1: (Double, Double, Double, Double, Double) = (5.1, 3.8, 1.6, 0.2, 1.0)
    //    df2.printSchema()

    val f1: DenseVector[Double] = DenseMatrix(fs1).toDenseVector

    println(f1)
    * */
    euclideanDisting()

//    val d1: DenseVector[Double] = DenseVector(5.1, 3.5, 1.4, 0.2, 1.0)
    //0.5385164807134502

//    val d2: DenseVector[Double] = DenseVector(4.9, 3.0, 1.4, 0.2, 1.0)


//    println(math.sqrt((((d1-d2)*(d1-d2)).sum)))



  }
}

  

 

posted @ 2020-04-03 16:41  洺剑残虹  阅读(765)  评论(0编辑  收藏  举报