spark2.0以上 RDD 转 dataframe 及数据处理 ERROR Executor:91 - Exception in task 1.0 in stage 0.0 (TID 1) java.lang.NumberFormatException: empty String
1、配置文件
package config import org.apache.spark.sql.SparkSession import org.apache.spark.{SparkConf, SparkContext} case object conf { private val master = "local[*]" val confs: SparkConf = new SparkConf().setMaster(master).setAppName("jobs") // val confs: SparkConf = new SparkConf().setMaster("http://laptop-2up1s8pr:4040/").setAppName("jobs") val sc = new SparkContext(confs) sc.setLogLevel("ERROR") val spark_session: SparkSession = SparkSession.builder() .appName("jobs").config(confs).getOrCreate() // 设置支持笛卡尔积 对于spark2.0来说 spark_session.conf.set("spark.sql.crossJoin.enabled",true) }
2、读取RDD及转换dataframe,spark2.0 dataframe保存CSV文件方法
package sparkDataMange import config.conf.{sc,spark_session} import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, Row, SaveMode} import config.conf.spark_session.implicits._ object irisDataMange { def main(args: Array[String]): Unit = { val path:String = "data/iris.data" val irisData: RDD[String] = sc.textFile(path) // case class irsModel(ft1:String,ft2:String,ft3:String,ft4:String,label:String) val rdd1: RDD[Array[String]] = irisData.map(lines => {lines.split(",")}) val df: RDD[(Double, Double, Double, Double, Double)] = rdd1.map(line => { (line(0).toDouble, line(1).toDouble, line(2).toDouble, line(3).toDouble, if (line(4) == "Iris-setosa") { 1D } else if (line(4) == "Iris-versicolor") { 2D } else { 3D }) }) val df1: DataFrame = df.toDF("ft1","ft2","ft3","ft4","label") println(df1.count()) //创建临时表 df1.createOrReplaceTempView("iris") spark_session.sql("select * from iris").show(150) //保存csv df1.coalesce(1).write.format("csv").save("data/irsdf") sc.stop() } }
3、报错注意:
ERROR Executor:91 - Exception in task 1.0 in stage 0.0 (TID 1) java.lang.NumberFormatException: empty String
把多余的回车去掉,只保留标准的CSV数据格式,否则在处理转dataframe的时候出问题。
自动化学习。