pyspark的安装配置

1、搭建基本spark+Hadoop的本地环境

  https://blog.csdn.net/u011513853/article/details/52865076?tdsourcetag=s_pcqq_aiomsg

2、下载对应的spark与pyspark的版本进行安装

  https://pypi.org/project/pyspark/2.3.0/#history

3、单词统计测试

  a、python版本

import os
import shutil

from pyspark import SparkContext

inputpath = './data/wc.txt'
outputpath = './data/out.txt'

sc = SparkContext('local', 'wordcount')

# 读取文件
input = sc.textFile(inputpath)
# 切分单词
words = input.flatMap(lambda line: line.split(' '))
# 转换成键值对并计数
counts = words.map(lambda word: (word, 1)).reduceByKey(lambda x, y: x + y)

# 输出结果
counts.foreach(print)

# 删除输出目录
if os.path.exists(outputpath):
    shutil.rmtree(outputpath, True)

# 将统计结果写入结果文件
counts.saveAsTextFile(outputpath)

  

  b、scala版本

package com.wcount

import java.io.{File, PrintWriter}

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object ScalaWordCount {

  def main(args: Array[String]): Unit = {
    /**
      * SparkConf:表示spark application的参数,
      *   setMaster:表示运行的模式:
      *
      *       local:本地模式,一般用于测试
      *       standalone:spark集群自带的资源调度模式
      *       yarn:hadoop
      *       mesos:资源调度框架
      *   setAppName:设置application的名称
      */
    val conf = new SparkConf().setMaster("local").setAppName("workJob")
    /**
      * SparkContext:spark application的上下文环境,通往集群的唯一入口
      */
    val sc = new SparkContext(conf)

//    val session: SparkSession = SparkSession.builder.appName("wc").master("local").getOrCreate()


    val lines: RDD[String] = sc.textFile("./data/wc.txt")
    val words: RDD[String] = lines.flatMap(line => {
      println("flatmap...........")
      line.split(" ")
    })
    val tuple: RDD[(String, Int)] = words.map(word => {
      println("map............")
      new Tuple2(word, 1)
    })
    val result: RDD[(String, Int)] = tuple.reduceByKey((v1: Int, v2: Int) => v1 + v2)
    //result.foreach(println)

    //文件写入
    val outWriter = new PrintWriter(new File("./data/out.txt"))
    var wt:String = ""

    for (item<-result){
      wt =item._1.toString+":"+item._2.toString+" "
      println(wt)
    }
    println(wt)
    outWriter.println(wt)
    outWriter.close()

    while (true){

    }
    //    sc.textFile("./data/wc").flatMap(line => {line.split(" ")}).map(word => {new Tuple2(word, 1)}).reduceByKey((v1: Int, v2: Int) => v1 + v2).foreach(println)
    sc.stop()
  }
}

  

 

posted @ 2019-06-04 10:03  洺剑残虹  阅读(9859)  评论(1编辑  收藏  举报