欧拉计划6-10题
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
前十个自然数的平方和是:
前十个自然数的和的平方是:
所以平方和与和的平方的差是3025 385 = 2640.
找出前一百个自然数的平方和与和平方的差。
#include <stdio.h> #include <string.h> #include <ctype.h> #include <math.h> #define N 100 int powplus(int n, int k) { int s=1; while(k--) { s*=n; } return s; } int sum1(int n) { return powplus((n+1)*n/2,2); } int sum2(int n) { return (n*(n+1)*(2*n+1))/6; } void solve() { printf("%d\n",sum1(N)); printf("%d\n",sum2(N)); printf("%d\n",sum1(N)-sum2(N)); } int main() { solve(); return 0; }
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the 10 001st prime number?
前六个质数是2,3,5,7,11和13,其中第6个是13.
第10001个质数是多少?
#include <stdio.h> #include <string.h> #include <ctype.h> #include <math.h> int prim(int n) { int i; for(i=2; i*i<=n; i++) { if(n%i==0) return 0; } return 1; } void solve(int n) { int i=2; int count=0; while(1) { if(prim(i)) { count++; if(count==n) break; } i++; } printf("%d\n",i); } int main() { int n=10001; solve(n); return 0; }
Completed on Thu, 4 Apr 2013, 17:34
Find the greatest product of five consecutive digits in the 1000-digit number.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
找出以下这个1000位的整数中连续5个数字的最大乘积。(例如前五个数字的乘积是7*3*1*6*7=882)
#include <stdio.h> #include <stdlib.h> int main() { FILE *fp; char *buffer; int i=0,j=0; fp=fopen("E://file.txt","r"); char c; while((c=fgetc(fp))){ if(c==EOF) break; else if(c!='\n') i++; } buffer=(char *)malloc(i*sizeof(char)); rewind(fp); while((c=fgetc(fp))){ if(c==EOF) break; else if(c!='\n') { *(buffer+j)=c; j++; } } findmax(buffer,i); } int findmax(char *buffer,int i) { int j=0,max=0; for(j=0;j<i-4;j++) { if(max<((buffer[j]-'0')*(buffer[j+1]-'0')*(buffer[j+2]-'0')*(buffer[j+3]-'0')*(buffer[j+4]-'0'))) max=((buffer[j]-'0')*(buffer[j+1]-'0')*(buffer[j+2]-'0')*(buffer[j+3]-'0')*(buffer[j+4]-'0')); } printf("\n%d",max); return 0; }
A Pythagorean triplet is a set of three natural numbers, a b c, for which,
For example, 32 + 42 = 9 + 16 = 25 = 52.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
一个毕达哥拉斯三元组是一个包含三个自然数的集合,a<b<c,满足条件:
例如:32 + 42 = 9 + 16 = 25 = 52.
已知存在并且只存在一个毕达哥拉斯三元组满足条件a + b + c = 1000。
找出该三元组中abc的乘积。
#include<stdio.h> #include<math.h> #include<string.h> #include<ctype.h> #include<stdlib.h> #include<stdbool.h> void show() { int a,b,c; for(a=1; a<333; a++) { for(c=333; c<500; c++) { b=1000-a-c; if(a*a+b*b==c*c) { printf("%d\n",a*b*c); return; } } } } int main() { show(); return 0; }
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
10以下的质数的和是2 + 3 + 5 + 7 = 17.
找出两百万以下所有质数的和。
#include<stdio.h> #include<math.h> #include<stdbool.h> #define N 2000000 bool prim(int n) { int i; for(i=2; i*i<=n; i++) { if(n%i==0) return false; } return true; } int main() { int i; long long sum=2; for(i=3; i<=N; i=i+2) { if(prim(i)) { sum+=i; } } printf("%lld\n",sum); return 0; }
Completed on Tue, 23 Jul 2013, 17:02