欧拉计划1-5题

1、Multiples of 3 and 5

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

题目大意:

10以下的自然数中,属于3和5的倍数的有3,5,6和9,它们之和是23.

找出1000以下的自然数中,属于3和5的倍数的数字之和。

#include <stdio.h>
#include <string.h>
#include <ctype.h>
   
void solve()
{
  int sum,i;
  sum=0;
  for(i=3; i<1000; i++)
  {
     if(i%3==0 || i%5==0)
     {
        sum+=i;
     }
  }
  printf("%d\n",sum);
     
}
   
int main()
{
  solve();
  return 0;
}
View Code
Answer:233168

Completed on Sun, 31 Mar 2013, 14:35

 


 2、Even Fibonacci numbers

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

题目大意:

斐波那契数列中的每一项被定义为前两项之和。从1和2开始,斐波那契数列的前十项为:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

考虑斐波那契数列中数值不超过4百万的项,找出这些项中值为偶数的项之和。

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
  
#define N 4000000
  
int a[1001];
  
void solve()
{
   int a,b,c,n,count=2;
   a=1,c=0,b=2;
   n=3;
   while(c<=N)
   {
     c=a+b;
     if(n%2!=0)
     {
        a=c;
     }
     else
     {
        b=c;
     }
     n++;
     if(c%2==0)
     {
       count+=c;
     }
   }
   printf("%d",count);
}
  
int main()
{
  solve();
  return 0;
}
View Code
Answer:4613732
Completed on Tue, 2 Apr 2013, 06:36
 

3、Largest prime factor

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143 ?

题目大意:

13195的质数因子有5,7,13和29.

600851475143的最大质数因子是多少?

#include<stdio.h>
#include<math.h>
#include<stdbool.h>
#define N 600851475143

bool prim(int n)
{
    int i;
    for(i=2; i*i<=n; i++)
    {
        if(n%i==0)
            return false;
    }
    return true;
}

int main()
{
    long long s=sqrt(N);
    while(s--)
    {
        if(s%2!=0 && prim(s) && (N%s==0))
        {
            
            printf("%lld\n",s);
            break;
        }
    }
    return 0;
}
View Code
Answer:6857
Completed on Tue, 23 Jul 2013, 17:18
 

 4、Largest palindrome product

A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.

Find the largest palindrome made from the product of two 3-digit numbers.

题目大意:

一个回文数指的是从左向右和从右向左读都一样的数字。最大的由两个两位数乘积构成的回文数是9009 = 91 * 99.

找出最大的有由个三位数乘积构成的回文数。

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h>


bool palindromic(int n)  //判断一个整数是否为回文数
{
    char s[10];
    sprintf(s,"%d",n);  //将整数n保存在字符数组s中
    int i,len;
    len=strlen(s);
    for(i=0; i<len/2; i++)
    {
        if(s[i]!=s[len-i-1])
            return false;
    }
    return true;
}

bool have_the_factor(int n)   //判断是否含有两个3位数的因数
{
    int s=999;
    int r,b;
    while(s>100)
    {
        if((n%s)==0 && ((n/s)>100  && (n/s)<1000))
            return true;
        s--;
    }
    return false;
}

int main()
{
    int i=1000000;
    while(i>0)
    {
        if(palindromic(i) && have_the_factor(i))
        {
            printf("%d\n",i);
            break;
        }
        i--;
    }
    return 0;
}
View Code
Answer:906609
Completed on Wed, 24 Jul 2013, 04:34
 

2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.

What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?

题目大意:

2520是最小的能被1-10中每个数字整除的正整数。

最小的能被1-20中每个数整除的正整数是多少?

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
  
#define N 20
  
int gcd(int a, int b)
{
  if(b==0)
    return a;
  else
    return gcd(b,a%b);
}
  
int lcm(int a, int b)
{
  return a/(gcd(a,b))*b;
}
  
  
void solve()
{
   int i,s=2;
   for(i=3; i<=N; i++)
   {
      s=lcm(s,i);
   }
   printf("%d\n",s);
}
  
int main()
{
  solve();
  return 0;
}
View Code
Answer:232792560
Completed on Tue, 2 Apr 2013, 07:21

 

posted @ 2014-04-08 00:38  wuyudong  阅读(489)  评论(2编辑  收藏  举报
Top_arrow