Hadoop中Partition深度解析
本文地址:http://www.cnblogs.com/archimedes/p/hadoop-partitioner.html,转载请注明源地址。
旧版 API 的 Partitioner 解析
Partitioner 的作用是对 Mapper 产生的中间结果进行分片,以便将同一分组的数据交给同一个 Reducer 处理,它直接影响 Reduce 阶段的负载均衡。旧版 API 中 Partitioner 的类图如图所示。它继承了JobConfigurable,可通过 configure 方法初始化。它本身只包含一个待实现的方法 getPartition。 该方法包含三个参数, 均由框架自动传入,前面两个参数是key/value,第三个参数 numPartitions 表示每个 Mapper 的分片数,也就是 Reducer 的个数。
MapReduce 提供了两个Partitioner 实 现:HashPartitioner和TotalOrderPartitioner。其中 HashPartitioner 是默认实现,它实现了一种基于哈希值的分片方法,代码如下:
public int getPartition(K2 key, V2 value, int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
TotalOrderPartitioner 提供了一种基于区间的分片方法,通常用在数据全排序中。在MapReduce 环境中,容易想到的全排序方案是归并排序,即在 Map 阶段,每个 Map Task进行局部排序;在 Reduce 阶段,启动一个 Reduce Task 进行全局排序。由于作业只能有一个 Reduce Task,因而 Reduce 阶段会成为作业的瓶颈。为了提高全局排序的性能和扩展性,MapReduce 提供了 TotalOrderPartitioner。它能够按照大小将数据分成若干个区间(分片),并保证后一个区间的所有数据均大于前一个区间数据,这使得全排序的步骤如下:
步骤1:数据采样。在 Client 端通过采样获取分片的分割点。Hadoop 自带了几个采样算法,如 IntercalSampler、 RandomSampler、 SplitSampler 等(具体见org.apache.hadoop.mapred.lib 包中的 InputSampler 类)。 下面举例说明。
采样数据为: b, abc, abd, bcd, abcd, efg, hii, afd, rrr, mnk
经排序后得到: abc, abcd, abd, afd, b, bcd, efg, hii, mnk, rrr
如果 Reduce Task 个数为 4,则采样数据的四等分点为 abd、 bcd、 mnk,将这 3 个字符串作为分割点。
步骤2:Map 阶段。本阶段涉及两个组件,分别是 Mapper 和 Partitioner。其中,Mapper 可采用 IdentityMapper,直接将输入数据输出,但 Partitioner 必须选用TotalOrderPartitioner,它将步骤 1 中获取的分割点保存到 trie 树中以便快速定位任意一个记录所在的区间,这样,每个 Map Task 产生 R(Reduce Task 个数)个区间,且区间之间有序。TotalOrderPartitioner 通过 trie 树查找每条记录所对应的 Reduce Task 编号。 如图所示, 我们将分割点 保存在深度为 2 的 trie 树中, 假设输入数据中 有两个字符串“ abg”和“ mnz”, 则字符串“ abg” 对应 partition1, 即第 2 个 Reduce Task, 字符串“ mnz” 对应partition3, 即第 4 个 Reduce Task。
步骤 3:Reduce 阶段。每个 Reducer 对分配到的区间数据进行局部排序,最终得到全排序数据。从以上步骤可以看出,基于 TotalOrderPartitioner 全排序的效率跟 key 分布规律和采样算法有直接关系;key 值分布越均匀且采样越具有代表性,则 Reduce Task 负载越均衡,全排序效率越高。TotalOrderPartitioner 有两个典型的应用实例: TeraSort 和 HBase 批量数据导入。 其中,TeraSort 是 Hadoop 自 带的一个应用程序实例。 它曾在 TB 级数据排序基准评估中 赢得第一名,而 TotalOrderPartitioner正是从该实例中提炼出来的。HBase 是一个构建在 Hadoop之上的 NoSQL 数据仓库。它以 Region为单位划分数据,Region 内部数据有序(按 key 排序),Region 之间也有序。很明显,一个 MapReduce 全排序作业的 R 个输出文件正好可对应 HBase 的 R 个 Region。
新版 API 的 Partitioner 解析
新版 API 中的Partitioner类图如图所示。它不再实现JobConfigurable 接口。当用户需要让 Partitioner通过某个JobConf 对象初始化时,可自行实现Configurable 接口,如:
public class TotalOrderPartitioner<K, V> extends Partitioner<K,V> implements Configurable
Partition所处的位置
Partition主要作用就是将map的结果发送到相应的reduce。这就对partition有两个要求:
1)均衡负载,尽量的将工作均匀的分配给不同的reduce。
2)效率,分配速度一定要快。
Mapreduce提供的Partitioner
1. Partitioner<k,v>是partitioner的基类,如果需要定制partitioner也需要继承该类。源代码如下:
package org.apache.hadoop.mapred; /** * Partitions the key space. * * <p><code>Partitioner</code> controls the partitioning of the keys of the * intermediate map-outputs. The key (or a subset of the key) is used to derive * the partition, typically by a hash function. The total number of partitions * is the same as the number of reduce tasks for the job. Hence this controls * which of the <code>m</code> reduce tasks the intermediate key (and hence the * record) is sent for reduction.</p> * * @see Reducer * @deprecated Use {@link org.apache.hadoop.mapreduce.Partitioner} instead. */ @Deprecated public interface Partitioner<K2, V2> extends JobConfigurable { /** * Get the paritition number for a given key (hence record) given the total * number of partitions i.e. number of reduce-tasks for the job. * * <p>Typically a hash function on a all or a subset of the key.</p> * * @param key the key to be paritioned. * @param value the entry value. * @param numPartitions the total number of partitions. * @return the partition number for the <code>key</code>. */ int getPartition(K2 key, V2 value, int numPartitions); }
2. HashPartitioner<k,v>是mapreduce的默认partitioner。源代码如下:
package org.apache.hadoop.mapreduce.lib.partition; import org.apache.hadoop.mapreduce.Partitioner; /** Partition keys by their {@link Object#hashCode()}. */ public class HashPartitioner<K, V> extends Partitioner<K, V> { /** Use {@link Object#hashCode()} to partition. */ public int getPartition(K key, V value, int numReduceTasks) { return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; } }
3. BinaryPatitioner继承于Partitioner<BinaryComparable ,V>,是Partitioner<k,v>的偏特化子类。该类提供leftOffset和rightOffset,在计算which reducer时仅对键值K的[rightOffset,leftOffset]这个区间取hash。
reducer=(hash & Integer.MAX_VALUE) % numReduceTasks
4. KeyFieldBasedPartitioner<k2, v2="">也是基于hash的个partitioner。和BinaryPatitioner不同,它提供了多个区间用于计算hash。当区间数为0时KeyFieldBasedPartitioner退化成HashPartitioner。 源代码如下:
package org.apache.hadoop.mapred.lib; import java.io.UnsupportedEncodingException; import java.util.List; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.Partitioner; import org.apache.hadoop.mapred.lib.KeyFieldHelper.KeyDescription; /** * Defines a way to partition keys based on certain key fields (also see * {@link KeyFieldBasedComparator}. * The key specification supported is of the form -k pos1[,pos2], where, * pos is of the form f[.c][opts], where f is the number * of the key field to use, and c is the number of the first character from * the beginning of the field. Fields and character posns are numbered * starting with 1; a character position of zero in pos2 indicates the * field's last character. If '.c' is omitted from pos1, it defaults to 1 * (the beginning of the field); if omitted from pos2, it defaults to 0 * (the end of the field). * */ public class KeyFieldBasedPartitioner<K2, V2> implements Partitioner<K2, V2> { private static final Log LOG = LogFactory.getLog(KeyFieldBasedPartitioner.class.getName()); private int numOfPartitionFields; private KeyFieldHelper keyFieldHelper = new KeyFieldHelper(); public void configure(JobConf job) { String keyFieldSeparator = job.get("map.output.key.field.separator", "\t"); keyFieldHelper.setKeyFieldSeparator(keyFieldSeparator); if (job.get("num.key.fields.for.partition") != null) { LOG.warn("Using deprecated num.key.fields.for.partition. " + "Use mapred.text.key.partitioner.options instead"); this.numOfPartitionFields = job.getInt("num.key.fields.for.partition",0); keyFieldHelper.setKeyFieldSpec(1,numOfPartitionFields); } else { String option = job.getKeyFieldPartitionerOption(); keyFieldHelper.parseOption(option); } } public int getPartition(K2 key, V2 value, int numReduceTasks) { byte[] keyBytes; List <KeyDescription> allKeySpecs = keyFieldHelper.keySpecs(); if (allKeySpecs.size() == 0) { return getPartition(key.toString().hashCode(), numReduceTasks); } try { keyBytes = key.toString().getBytes("UTF-8"); } catch (UnsupportedEncodingException e) { throw new RuntimeException("The current system does not " + "support UTF-8 encoding!", e); } // return 0 if the key is empty if (keyBytes.length == 0) { return 0; } int []lengthIndicesFirst = keyFieldHelper.getWordLengths(keyBytes, 0, keyBytes.length); int currentHash = 0; for (KeyDescription keySpec : allKeySpecs) { int startChar = keyFieldHelper.getStartOffset(keyBytes, 0, keyBytes.length, lengthIndicesFirst, keySpec); // no key found! continue if (startChar < 0) { continue; } int endChar = keyFieldHelper.getEndOffset(keyBytes, 0, keyBytes.length, lengthIndicesFirst, keySpec); currentHash = hashCode(keyBytes, startChar, endChar, currentHash); } return getPartition(currentHash, numReduceTasks); } protected int hashCode(byte[] b, int start, int end, int currentHash) { for (int i = start; i <= end; i++) { currentHash = 31*currentHash + b[i]; } return currentHash; } protected int getPartition(int hash, int numReduceTasks) { return (hash & Integer.MAX_VALUE) % numReduceTasks; } }
5. TotalOrderPartitioner这个类可以实现输出的全排序。不同于以上3个partitioner,这个类并不是基于hash的。下面详细的介绍TotalOrderPartitioner
TotalOrderPartitioner 类
每一个reducer的输出在默认的情况下都是有顺序的,但是reducer之间在输入是无序的情况下也是无序的。如果要实现输出是全排序的那就会用到TotalOrderPartitioner。
要使用TotalOrderPartitioner,得给TotalOrderPartitioner提供一个partition file。这个文件要求Key(这些key就是所谓的划分)的数量和当前reducer的数量-1相同并且是从小到大排列。对于为什么要用到这样一个文件,以及这个文件的具体细节待会还会提到。
TotalOrderPartitioner对不同Key的数据类型提供了两种方案:
1) 对于非BinaryComparable 类型的Key,TotalOrderPartitioner采用二分发查找当前的K所在的index。
例如:reducer的数量为5,partition file 提供的4个划分为【2,4,6,8】。如果当前的一个key/value 是<4,”good”>,利用二分法查找到index=1,index+1=2那么这个key/value 将会发送到第二个reducer。如果一个key/value为<4.5, “good”>。那么二分法查找将返回-3,同样对-3加1然后取反就是这个key/value将要去的reducer。
对于一些数值型的数据来说,利用二分法查找复杂度是O(log(reducer count)),速度比较快。
2) 对于BinaryComparable类型的Key(也可以直接理解为字符串)。字符串按照字典顺序也是可以进行排序的。
这样的话也可以给定一些划分,让不同的字符串key分配到不同的reducer里。这里的处理和数值类型的比较相近。
例如:reducer的数量为5,partition file 提供了4个划分为【“abc”, “bce”, “eaa”, ”fhc”】那么“ab”这个字符串将会被分配到第一个reducer里,因为它小于第一个划分“abc”。
但是不同于数值型的数据,字符串的查找和比较不能按照数值型数据的比较方法。mapreducer采用的Tire tree(关于Tire tree可以参考《字典树(Trie Tree)》)的字符串查找方法。查找的时间复杂度o(m),m为树的深度,空间复杂度o(255^m-1)。是一个典型的空间换时间的案例。
Tire tree的构建
假设树的最大深度为3,划分为【aaad ,aaaf, aaaeh,abbx】
1) Innertirenode
Innertirenode在mapreduce中是包含了255个字符的一个比较长的串。上图中的例子只包含了26个英文字母。
2) 叶子节点{unslipttirenode, singesplittirenode, leaftirenode}
Unslipttirenode 是不包含划分的叶子节点。
Singlesplittirenode 是只包含了一个划分点的叶子节点。
Leafnode是包含了多个划分点的叶子节点。(这种情况比较少见,达到树的最大深度才出现这种情况。在实际操作过程中比较少见)
Tire tree的搜索过程
接上面的例子:
1)假如当前 key value pair <aad, 10="">这时会找到图中的leafnode,在leafnode内部使用二分法继续查找找到返回 aad在划分数组中的索引。找不到会返回一个和它最接近的划分的索引。
2)假如找到singlenode,如果和singlenode的划分相同或小返回他的索引,比singlenode的划分大则返回索引+1。
3)假如找到nosplitnode则返回前面的索引。如<zaa, 20="">将会返回abbx的在划分数组中的索引。
TotalOrderPartitioner的疑问
上面介绍了partitioner有两个要求,一个是速度,另外一个是均衡负载。使用tire tree提高了搜素的速度,但是我们怎么才能找到这样的partition file 呢?让所有的划分刚好就能实现均衡负载。
InputSampler
输入采样类,可以对输入目录下的数据进行采样。提供了3种采样方法。
采样方式对比表:
类名称 |
采样方式 |
构造方法 |
效率 |
特点 |
SplitSampler<K,V> |
对前n个记录进行采样 |
采样总数,划分数 |
最高 |
|
RandomSampler<K,V> |
遍历所有数据,随机采样 |
采样频率,采样总数,划分数 |
最低 |
|
IntervalSampler<K,V> |
固定间隔采样 |
采样频率,划分数 |
中 |
对有序的数据十分适用 |
writePartitionFile这个方法很关键,这个方法就是根据采样类提供的样本,首先进行排序,然后选定(随机的方法)和reducer数目-1的样本写入到partition file。这样经过采样的数据生成的划分,在每个划分区间里的key/value就近似相同了,这样就能完成均衡负载的作用。
SplitSampler类的源代码如下:
/** * Samples the first n records from s splits. * Inexpensive way to sample random data. */ public static class SplitSampler<K,V> implements Sampler<K,V> { private final int numSamples; private final int maxSplitsSampled; /** * Create a SplitSampler sampling <em>all</em> splits. * Takes the first numSamples / numSplits records from each split. * @param numSamples Total number of samples to obtain from all selected * splits. */ public SplitSampler(int numSamples) { this(numSamples, Integer.MAX_VALUE); } /** * Create a new SplitSampler. * @param numSamples Total number of samples to obtain from all selected * splits. * @param maxSplitsSampled The maximum number of splits to examine. */ public SplitSampler(int numSamples, int maxSplitsSampled) { this.numSamples = numSamples; this.maxSplitsSampled = maxSplitsSampled; } /** * From each split sampled, take the first numSamples / numSplits records. */ @SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(numSamples); int splitsToSample = Math.min(maxSplitsSampled, splits.length); int splitStep = splits.length / splitsToSample; int samplesPerSplit = numSamples / splitsToSample; long records = 0; for (int i = 0; i < splitsToSample; ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { samples.add(key); key = reader.createKey(); ++records; if ((i+1) * samplesPerSplit <= records) { break; } } reader.close(); } return (K[])samples.toArray(); } }
RandomSampler类的源代码如下:
/** * Sample from random points in the input. * General-purpose sampler. Takes numSamples / maxSplitsSampled inputs from * each split. */ public static class RandomSampler<K,V> implements Sampler<K,V> { private double freq; private final int numSamples; private final int maxSplitsSampled; /** * Create a new RandomSampler sampling <em>all</em> splits. * This will read every split at the client, which is very expensive. * @param freq Probability with which a key will be chosen. * @param numSamples Total number of samples to obtain from all selected * splits. */ public RandomSampler(double freq, int numSamples) { this(freq, numSamples, Integer.MAX_VALUE); } /** * Create a new RandomSampler. * @param freq Probability with which a key will be chosen. * @param numSamples Total number of samples to obtain from all selected * splits. * @param maxSplitsSampled The maximum number of splits to examine. */ public RandomSampler(double freq, int numSamples, int maxSplitsSampled) { this.freq = freq; this.numSamples = numSamples; this.maxSplitsSampled = maxSplitsSampled; } /** * Randomize the split order, then take the specified number of keys from * each split sampled, where each key is selected with the specified * probability and possibly replaced by a subsequently selected key when * the quota of keys from that split is satisfied. */ @SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(numSamples); int splitsToSample = Math.min(maxSplitsSampled, splits.length); Random r = new Random(); long seed = r.nextLong(); r.setSeed(seed); LOG.debug("seed: " + seed); // shuffle splits for (int i = 0; i < splits.length; ++i) { InputSplit tmp = splits[i]; int j = r.nextInt(splits.length); splits[i] = splits[j]; splits[j] = tmp; } // our target rate is in terms of the maximum number of sample splits, // but we accept the possibility of sampling additional splits to hit // the target sample keyset for (int i = 0; i < splitsToSample || (i < splits.length && samples.size() < numSamples); ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { if (r.nextDouble() <= freq) { if (samples.size() < numSamples) { samples.add(key); } else { // When exceeding the maximum number of samples, replace a // random element with this one, then adjust the frequency // to reflect the possibility of existing elements being // pushed out int ind = r.nextInt(numSamples); if (ind != numSamples) { samples.set(ind, key); } freq *= (numSamples - 1) / (double) numSamples; } key = reader.createKey(); } } reader.close(); } return (K[])samples.toArray(); } }
IntervalSampler类的源代码为:
/** * Sample from s splits at regular intervals. * Useful for sorted data. */ public static class IntervalSampler<K,V> implements Sampler<K,V> { private final double freq; private final int maxSplitsSampled; /** * Create a new IntervalSampler sampling <em>all</em> splits. * @param freq The frequency with which records will be emitted. */ public IntervalSampler(double freq) { this(freq, Integer.MAX_VALUE); } /** * Create a new IntervalSampler. * @param freq The frequency with which records will be emitted. * @param maxSplitsSampled The maximum number of splits to examine. * @see #getSample */ public IntervalSampler(double freq, int maxSplitsSampled) { this.freq = freq; this.maxSplitsSampled = maxSplitsSampled; } /** * For each split sampled, emit when the ratio of the number of records * retained to the total record count is less than the specified * frequency. */ @SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(); int splitsToSample = Math.min(maxSplitsSampled, splits.length); int splitStep = splits.length / splitsToSample; long records = 0; long kept = 0; for (int i = 0; i < splitsToSample; ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { ++records; if ((double) kept / records < freq) { ++kept; samples.add(key); key = reader.createKey(); } } reader.close(); } return (K[])samples.toArray(); } }
InputSampler类完整源代码如下:
package org.apache.hadoop.mapred.lib; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.Random; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.RawComparator; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.InputFormat; import org.apache.hadoop.mapred.InputSplit; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.RecordReader; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** * Utility for collecting samples and writing a partition file for * {@link org.apache.hadoop.mapred.lib.TotalOrderPartitioner}. */ public class InputSampler<K,V> implements Tool { private static final Log LOG = LogFactory.getLog(InputSampler.class); static int printUsage() { System.out.println("sampler -r <reduces>\n" + " [-inFormat <input format class>]\n" + " [-keyClass <map input & output key class>]\n" + " [-splitRandom <double pcnt> <numSamples> <maxsplits> | " + "// Sample from random splits at random (general)\n" + " -splitSample <numSamples> <maxsplits> | " + " // Sample from first records in splits (random data)\n"+ " -splitInterval <double pcnt> <maxsplits>]" + " // Sample from splits at intervals (sorted data)"); System.out.println("Default sampler: -splitRandom 0.1 10000 10"); ToolRunner.printGenericCommandUsage(System.out); return -1; } private JobConf conf; public InputSampler(JobConf conf) { this.conf = conf; } public Configuration getConf() { return conf; } public void setConf(Configuration conf) { if (!(conf instanceof JobConf)) { this.conf = new JobConf(conf); } else { this.conf = (JobConf) conf; } } /** * Interface to sample using an {@link org.apache.hadoop.mapred.InputFormat}. */ public interface Sampler<K,V> { /** * For a given job, collect and return a subset of the keys from the * input data. */ K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException; } /** * Samples the first n records from s splits. * Inexpensive way to sample random data. */ public static class SplitSampler<K,V> implements Sampler<K,V> { private final int numSamples; private final int maxSplitsSampled; /** * Create a SplitSampler sampling <em>all</em> splits. * Takes the first numSamples / numSplits records from each split. * @param numSamples Total number of samples to obtain from all selected * splits. */ public SplitSampler(int numSamples) { this(numSamples, Integer.MAX_VALUE); } /** * Create a new SplitSampler. * @param numSamples Total number of samples to obtain from all selected * splits. * @param maxSplitsSampled The maximum number of splits to examine. */ public SplitSampler(int numSamples, int maxSplitsSampled) { this.numSamples = numSamples; this.maxSplitsSampled = maxSplitsSampled; } /** * From each split sampled, take the first numSamples / numSplits records. */ @SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(numSamples); int splitsToSample = Math.min(maxSplitsSampled, splits.length); int splitStep = splits.length / splitsToSample; int samplesPerSplit = numSamples / splitsToSample; long records = 0; for (int i = 0; i < splitsToSample; ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { samples.add(key); key = reader.createKey(); ++records; if ((i+1) * samplesPerSplit <= records) { break; } } reader.close(); } return (K[])samples.toArray(); } } /** * Sample from random points in the input. * General-purpose sampler. Takes numSamples / maxSplitsSampled inputs from * each split. */ public static class RandomSampler<K,V> implements Sampler<K,V> { private double freq; private final int numSamples; private final int maxSplitsSampled; /** * Create a new RandomSampler sampling <em>all</em> splits. * This will read every split at the client, which is very expensive. * @param freq Probability with which a key will be chosen. * @param numSamples Total number of samples to obtain from all selected * splits. */ public RandomSampler(double freq, int numSamples) { this(freq, numSamples, Integer.MAX_VALUE); } /** * Create a new RandomSampler. * @param freq Probability with which a key will be chosen. * @param numSamples Total number of samples to obtain from all selected * splits. * @param maxSplitsSampled The maximum number of splits to examine. */ public RandomSampler(double freq, int numSamples, int maxSplitsSampled) { this.freq = freq; this.numSamples = numSamples; this.maxSplitsSampled = maxSplitsSampled; } /** * Randomize the split order, then take the specified number of keys from * each split sampled, where each key is selected with the specified * probability and possibly replaced by a subsequently selected key when * the quota of keys from that split is satisfied. */ @SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(numSamples); int splitsToSample = Math.min(maxSplitsSampled, splits.length); Random r = new Random(); long seed = r.nextLong(); r.setSeed(seed); LOG.debug("seed: " + seed); // shuffle splits for (int i = 0; i < splits.length; ++i) { InputSplit tmp = splits[i]; int j = r.nextInt(splits.length); splits[i] = splits[j]; splits[j] = tmp; } // our target rate is in terms of the maximum number of sample splits, // but we accept the possibility of sampling additional splits to hit // the target sample keyset for (int i = 0; i < splitsToSample || (i < splits.length && samples.size() < numSamples); ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { if (r.nextDouble() <= freq) { if (samples.size() < numSamples) { samples.add(key); } else { // When exceeding the maximum number of samples, replace a // random element with this one, then adjust the frequency // to reflect the possibility of existing elements being // pushed out int ind = r.nextInt(numSamples); if (ind != numSamples) { samples.set(ind, key); } freq *= (numSamples - 1) / (double) numSamples; } key = reader.createKey(); } } reader.close(); } return (K[])samples.toArray(); } } /** * Sample from s splits at regular intervals. * Useful for sorted data. */ public static class IntervalSampler<K,V> implements Sampler<K,V> { private final double freq; private final int maxSplitsSampled; /** * Create a new IntervalSampler sampling <em>all</em> splits. * @param freq The frequency with which records will be emitted. */ public IntervalSampler(double freq) { this(freq, Integer.MAX_VALUE); } /** * Create a new IntervalSampler. * @param freq The frequency with which records will be emitted. * @param maxSplitsSampled The maximum number of splits to examine. * @see #getSample */ public IntervalSampler(double freq, int maxSplitsSampled) { this.freq = freq; this.maxSplitsSampled = maxSplitsSampled; } /** * For each split sampled, emit when the ratio of the number of records * retained to the total record count is less than the specified * frequency. */ @SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(); int splitsToSample = Math.min(maxSplitsSampled, splits.length); int splitStep = splits.length / splitsToSample; long records = 0; long kept = 0; for (int i = 0; i < splitsToSample; ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { ++records; if ((double) kept / records < freq) { ++kept; samples.add(key); key = reader.createKey(); } } reader.close(); } return (K[])samples.toArray(); } } /** * Write a partition file for the given job, using the Sampler provided. * Queries the sampler for a sample keyset, sorts by the output key * comparator, selects the keys for each rank, and writes to the destination * returned from {@link org.apache.hadoop.mapred.lib.TotalOrderPartitioner#getPartitionFile}. */ @SuppressWarnings("unchecked") // getInputFormat, getOutputKeyComparator public static <K,V> void writePartitionFile(JobConf job, Sampler<K,V> sampler) throws IOException { final InputFormat<K,V> inf = (InputFormat<K,V>) job.getInputFormat(); int numPartitions = job.getNumReduceTasks(); K[] samples = sampler.getSample(inf, job); LOG.info("Using " + samples.length + " samples"); RawComparator<K> comparator = (RawComparator<K>) job.getOutputKeyComparator(); Arrays.sort(samples, comparator); Path dst = new Path(TotalOrderPartitioner.getPartitionFile(job)); FileSystem fs = dst.getFileSystem(job); if (fs.exists(dst)) { fs.delete(dst, false); } SequenceFile.Writer writer = SequenceFile.createWriter(fs, job, dst, job.getMapOutputKeyClass(), NullWritable.class); NullWritable nullValue = NullWritable.get(); float stepSize = samples.length / (float) numPartitions; int last = -1; for(int i = 1; i < numPartitions; ++i) { int k = Math.round(stepSize * i); while (last >= k && comparator.compare(samples[last], samples[k]) == 0) { ++k; } writer.append(samples[k], nullValue); last = k; } writer.close(); } /** * Driver for InputSampler from the command line. * Configures a JobConf instance and calls {@link #writePartitionFile}. */ public int run(String[] args) throws Exception { JobConf job = (JobConf) getConf(); ArrayList<String> otherArgs = new ArrayList<String>(); Sampler<K,V> sampler = null; for(int i=0; i < args.length; ++i) { try { if ("-r".equals(args[i])) { job.setNumReduceTasks(Integer.parseInt(args[++i])); } else if ("-inFormat".equals(args[i])) { job.setInputFormat( Class.forName(args[++i]).asSubclass(InputFormat.class)); } else if ("-keyClass".equals(args[i])) { job.setMapOutputKeyClass( Class.forName(args[++i]).asSubclass(WritableComparable.class)); } else if ("-splitSample".equals(args[i])) { int numSamples = Integer.parseInt(args[++i]); int maxSplits = Integer.parseInt(args[++i]); if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE; sampler = new SplitSampler<K,V>(numSamples, maxSplits); } else if ("-splitRandom".equals(args[i])) { double pcnt = Double.parseDouble(args[++i]); int numSamples = Integer.parseInt(args[++i]); int maxSplits = Integer.parseInt(args[++i]); if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE; sampler = new RandomSampler<K,V>(pcnt, numSamples, maxSplits); } else if ("-splitInterval".equals(args[i])) { double pcnt = Double.parseDouble(args[++i]); int maxSplits = Integer.parseInt(args[++i]); if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE; sampler = new IntervalSampler<K,V>(pcnt, maxSplits); } else { otherArgs.add(args[i]); } } catch (NumberFormatException except) { System.out.println("ERROR: Integer expected instead of " + args[i]); return printUsage(); } catch (ArrayIndexOutOfBoundsException except) { System.out.println("ERROR: Required parameter missing from " + args[i-1]); return printUsage(); } } if (job.getNumReduceTasks() <= 1) { System.err.println("Sampler requires more than one reducer"); return printUsage(); } if (otherArgs.size() < 2) { System.out.println("ERROR: Wrong number of parameters: "); return printUsage(); } if (null == sampler) { sampler = new RandomSampler<K,V>(0.1, 10000, 10); } Path outf = new Path(otherArgs.remove(otherArgs.size() - 1)); TotalOrderPartitioner.setPartitionFile(job, outf); for (String s : otherArgs) { FileInputFormat.addInputPath(job, new Path(s)); } InputSampler.<K,V>writePartitionFile(job, sampler); return 0; } public static void main(String[] args) throws Exception { JobConf job = new JobConf(InputSampler.class); InputSampler<?,?> sampler = new InputSampler(job); int res = ToolRunner.run(sampler, args); System.exit(res); } }
TotalOrderPartitioner实例
public class SortByTemperatureUsingTotalOrderPartitioner extends Configured implements Tool { @Override public int run(String[] args) throws Exception { JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args); if (conf == null) { return -1; } conf.setInputFormat(SequenceFileInputFormat.class); conf.setOutputKeyClass(IntWritable.class); conf.setOutputFormat(SequenceFileOutputFormat.class); SequenceFileOutputFormat.setCompressOutput(conf, true); SequenceFileOutputFormat .setOutputCompressorClass(conf, GzipCodec.class); SequenceFileOutputFormat.setOutputCompressionType(conf, CompressionType.BLOCK); conf.setPartitionerClass(TotalOrderPartitioner.class); InputSampler.Sampler<IntWritable, Text> sampler = new InputSampler.RandomSampler<IntWritable, Text>( 0.1, 10000, 10); Path input = FileInputFormat.getInputPaths(conf)[0]; input = input.makeQualified(input.getFileSystem(conf)); Path partitionFile = new Path(input, "_partitions"); TotalOrderPartitioner.setPartitionFile(conf, partitionFile); InputSampler.writePartitionFile(conf, sampler); // Add to DistributedCache URI partitionUri = new URI(partitionFile.toString() + "#_partitions"); DistributedCache.addCacheFile(partitionUri, conf); DistributedCache.createSymlink(conf); JobClient.runJob(conf); return 0; } public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run( new SortByTemperatureUsingTotalOrderPartitioner(), args); System.exit(exitCode); } }
参考资料
1.《Hadoop技术内幕 深入理解MapReduce架构设计与实现原理》
2.http://www.cnblogs.com/xwdreamer/archive/2011/10/27/2296943.html
3.http://blog.oddfoo.net/2011/04/17/mapreduce-partition%E5%88%86%E6%9E%90-2/