道路分割+车辆识别
from openvino.inference_engine import IECore import time import numpy as np import cv2 as cv model_xml = "/home/bhc/BHC/model/intel/road-segmentation-adas-0001/FP16/road-segmentation-adas-0001.xml" model_bin = "/home/bhc/BHC/model/intel/road-segmentation-adas-0001/FP16/road-segmentation-adas-0001.bin" vehicel_xml = "/home/bhc/BHC/model/intel/vehicle-detection-adas-0002/FP16/vehicle-detection-adas-0002.xml" vehicel_bin = "/home/bhc/BHC/model/intel//vehicle-detection-adas-0002/FP16/vehicle-detection-adas-0002.bin" def ssd_video_demo(): ie = IECore() for device in ie.available_devices: print(device) # 道路分割 net = ie.read_network(model=model_xml, weights=model_bin) input_blob = next(iter(net.input_info)) out_blob = next(iter(net.outputs)) n, c, h, w = net.input_info[input_blob].input_data.shape print(n, c, h, w) cap = cv.VideoCapture("2.mp4") exec_net = ie.load_network(network=net, device_name="CPU") # 车辆检测 vnet = ie.read_network(model=vehicel_xml, weights=vehicel_bin) vehicle_input_blob = next(iter(vnet.input_info)) vehicle_out_blob = next(iter(vnet.outputs)) vn, vc, vh, vw = vnet.input_info[vehicle_input_blob].input_data.shape print(n, c, h, w) vehicle_exec_net = ie.load_network(network=vnet, device_name="CPU") while True: ret, frame = cap.read() if ret is not True: break # 车辆检测 inf_start = time.time() image = cv.resize(frame, (vw, vh)) image = image.transpose(2, 0, 1) vec_res = vehicle_exec_net.infer(inputs={vehicle_input_blob:[image]}) # 推理道路分割 image = cv.resize(frame, (w, h)) image = image.transpose(2, 0, 1) res = exec_net.infer(inputs={input_blob: [image]}) # 解析车辆检测结果 ih, iw, ic = frame.shape vec_res = vec_res[vehicle_out_blob] for obj in vec_res[0][0]: if obj[2] > 0.5: xmin = int(obj[3] * iw) ymin = int(obj[4] * ih) xmax = int(obj[5] * iw) ymax = int(obj[6] * ih) cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 255), 2, 8) cv.putText(frame, str(obj[2]), (xmin, ymin), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), 1) # 解析道路分割结果 res = res[out_blob] res = np.squeeze(res, 0) res = res.transpose(1, 2, 0) res = np.argmax(res, 2) print(res.shape) hh, ww = res.shape mask = np.zeros((hh, ww, 3), dtype=np.uint8) mask[np.where(res > 0)] = (0, 255, 255) mask[np.where(res > 1)] = (255, 0, 255) mask = cv.resize(mask, (frame.shape[1], frame.shape[0])) result = cv.addWeighted(frame, 0.5, mask, 0.5, 0) inf_end = time.time() - inf_start cv.putText(result, "infer time(ms): %.3f, FPS: %.2f"%(inf_end*1000, 1/(inf_end+0.0001)), (10, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 255), 2, 8) # out.write(result) cv.imshow("Pedestrian Detection", result) c = cv.waitKey(1) if c == 27: break cv.waitKey(0) cv.destroyAllWindows() if __name__ == "__main__": ssd_video_demo()
天道酬勤 循序渐进 技压群雄