行人属性
from openvino.inference_engine import IECore import numpy as np import time import cv2 as cv attris = "is_male:F,has_bag:F,has_backpack:F,has_hat:F,has_longsleeves:F," \ "has_longpants:F,has_longhair:F,has_coat_jacket:F" # 行人检测模型 model_xml = "/home/bhc/BHC/model/intel/pedestrian-detection-adas-0002/FP16/pedestrian-detection-adas-0002.xml" model_bin = "/home/bhc/BHC/model/intel/pedestrian-detection-adas-0002/FP16/pedestrian-detection-adas-0002.bin" # 行人属性识别 head_xml = "/home/bhc/BHC/model/intel/person-attributes-recognition-crossroad-0230/FP16/person-attributes-recognition-crossroad-0230.xml" head_bin = "/home/bhc/BHC/model/intel/person-attributes-recognition-crossroad-0230/FP16/person-attributes-recognition-crossroad-0230.bin" def person_attributes_demo(attris): ie = IECore() for device in ie.available_devices: print(device) net = ie.read_network(model=model_xml, weights=model_bin) input_blob = next(iter(net.input_info)) out_blob = next(iter(net.outputs)) n, c, h, w = net.input_info[input_blob].input_data.shape print(n, c, h, w) cap = cv.VideoCapture("1.mp4") # cap = cv.VideoCapture(0) exec_net = ie.load_network(network=net, device_name="CPU") head_net = ie.read_network(model=head_xml, weights=head_bin) em_input_blob = next(iter(head_net.input_info)) head_it = iter(head_net.outputs) head_out_blob1 = next(head_it) # angle_p_fc head_out_blob2 = next(head_it) # angle_r_fc head_out_blob3 = next(head_it) # angle_y_fc print(head_out_blob1, head_out_blob2, head_out_blob3) en, ec, eh, ew = head_net.input_info[em_input_blob].input_data.shape print(en, ec, eh, ew) em_exec_net = ie.load_network(network=head_net, device_name="CPU") while True: ret, frame = cap.read() if ret is not True: break image = cv.resize(frame, (w, h)) image = image.transpose(2, 0, 1) inf_start = time.time() res = exec_net.infer(inputs={input_blob: [image]}) inf_end = time.time() - inf_start # print("infer time(ms):%.3f"%(inf_end*1000)) ih, iw, ic = frame.shape #(1, 1, N, 7) res = res[out_blob] #[image_id, label, conf, x_min, y_min, x_max, y_max] for obj in res[0][0]: if obj[2] > 0.75: xmin = int(obj[3] * iw) ymin = int(obj[4] * ih) xmax = int(obj[5] * iw) ymax = int(obj[6] * ih) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax >= iw: xmax = iw - 1 if ymax >= ih: ymax = ih - 1 roi = frame[ymin:ymax, xmin:xmax, :] roi_img = cv.resize(roi, (ew, eh)) roi_img = roi_img.transpose(2, 0, 1) head_res = em_exec_net.infer(inputs={em_input_blob: [roi_img]}) c_453 = head_res[head_out_blob1].reshape(1, 8) #(1, 8, 1, 1 )人的属性:[is_male, has_bag, has_backpack, has_hat, has_longsleeves, has_longpants, has_longhair, has_coat_jacket] c_456 = head_res[head_out_blob2].reshape(1, 2) #(1, 2, 1, 1 )(上颜色) c_459 = head_res[head_out_blob3].reshape(1, 2) #(1, 2, 1, 1 )(下颜色) if c_453[0][0] > 0.5: attris = attris.replace("is_male:F","is_male:T") if c_453[0][0] > 0.5: attris = attris.replace("has_bag:F","has_bag:T") if c_453[0][0] > 0.5: attris = attris.replace("has_backpack:F","has_backpack:T") if c_453[0][0] > 0.5: attris = attris.replace("has_hat:F","has_hat:T") if c_453[0][0] > 0.5: attris = attris.replace("has_longsleeves:F","has_longsleeves:T") if c_453[0][0] > 0.5: attris = attris.replace("has_longpants:F","has_longpants:T") if c_453[0][0] > 0.5: attris = attris.replace("has_longhair:F","has_longhair:T") if c_453[0][0] > 0.5: attris = attris.replace("has_coat_jacket:F","has_coat_jacket:T") cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8) cv.putText(frame, attris, (xmin, ymin), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 0, 255), 2, 8) cv.putText(frame, "infer time(ms): %.3f, FPS: %.2f" % (inf_end * 1000, 1/inf_end), (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 255), 2, 8) cv.imshow("Face+emotion Detection", frame) c = cv.waitKey(1) if c == 27: break cv.waitKey(0) cv.destroyAllWindows() if __name__ == "__main__": person_attributes_demo(attris)
天道酬勤 循序渐进 技压群雄