头部姿态评估
from openvino.inference_engine import IECore import numpy as np import time import cv2 as cv # 人脸检测模型 model_xml = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.xml" model_bin = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.bin" # 头部姿态评估 head_xml = "/home/bhc/BHC/model/intel/head-pose-estimation-adas-0001/FP16/head-pose-estimation-adas-0001.xml" head_bin = "/home/bhc/BHC/model/intel/head-pose-estimation-adas-0001/FP16/head-pose-estimation-adas-0001.bin" def face_landmark_demo(): ie = IECore() for device in ie.available_devices: print(device) net = ie.read_network(model=model_xml, weights=model_bin) input_blob = next(iter(net.input_info)) out_blob = next(iter(net.outputs)) n, c, h, w = net.input_info[input_blob].input_data.shape print(n, c, h, w) # cap = cv.VideoCapture(0) cap = cv.VideoCapture("1.mp4") exec_net = ie.load_network(network=net, device_name="CPU") head_net = ie.read_network(model=head_xml, weights=head_bin) em_input_blob = next(iter(head_net.input_info)) head_it = iter(head_net.outputs) head_out_blob1 = next(head_it) # angle_p_fc #多个输出 (1, 1)yaw角度 head_out_blob2 = next(head_it) # angle_r_fc #(1, 1)pitch角度 head_out_blob3 = next(head_it) # angle_y_fc #(1, 1)roll角度 print(head_out_blob1, head_out_blob2, head_out_blob3) en, ec, eh, ew = head_net.input_info[em_input_blob].input_data.shape print(en, ec, eh, ew) em_exec_net = ie.load_network(network=head_net, device_name="CPU") while True: ret, frame = cap.read() if ret is not True: break image = cv.resize(frame, (w, h)) image = image.transpose(2, 0, 1) inf_start = time.time() res = exec_net.infer(inputs={input_blob: [image]}) inf_end = time.time() - inf_start # print("infer time(ms):%.3f"%(inf_end*1000)) ih, iw, ic = frame.shape res = res[out_blob] for obj in res[0][0]: if obj[2] > 0.75: xmin = int(obj[3] * iw) ymin = int(obj[4] * ih) xmax = int(obj[5] * iw) ymax = int(obj[6] * ih) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax >= iw: xmax = iw - 1 if ymax >= ih: ymax = ih - 1 roi = frame[ymin:ymax, xmin:xmax, :] roi_img = cv.resize(roi, (ew, eh)) roi_img = roi_img.transpose(2, 0, 1) head_res = em_exec_net.infer(inputs={em_input_blob: [roi_img]}) angle_p_fc = head_res[head_out_blob1][0][0] angle_r_fc = head_res[head_out_blob2][0][0] angle_y_fc = head_res[head_out_blob3][0][0] head_pose = "" if angle_p_fc > 20 or angle_p_fc < -20: head_pose += "pitch, " if angle_r_fc > 20 or angle_r_fc < -20: head_pose += "roll, " if angle_y_fc > 20 or angle_y_fc < -20: head_pose += "yaw, " cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8) cv.putText(frame, head_pose, (xmin, ymin), cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 255), 2, 8) cv.putText(frame, "infer time(ms): %.3f, FPS: %.2f" % (inf_end * 1000, 1/inf_end), (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 255), 2, 8) cv.imshow("Face+emotion Detection", frame) c = cv.waitKey(1) if c == 27: break cv.waitKey(0) cv.destroyAllWindows() if __name__ == "__main__": face_landmark_demo()
天道酬勤 循序渐进 技压群雄