异步推理-SSD
from openvino.inference_engine import IECore import cv2 as cv def ssd_video_demo(): ie = IECore() for device in ie.available_devices: print(device) with open('object_detection_classes_coco.txt') as f: labels = [line.strip() for line in f.readlines()] model_xml = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.xml" model_bin = "/home/bhc/BHC/model/intel/face-detection-0200/FP16/face-detection-0200.bin" net = ie.read_network(model=model_xml, weights=model_bin) input_blob = next(iter(net.input_info)) out_blob = next(iter(net.outputs)) n, c, h, w = net.input_info[input_blob].input_data.shape print(n, c, h, w) cap = cv.VideoCapture("1.mp4") exec_net = ie.load_network(network=net, device_name="CPU", num_requests=2) #指定两个request ret, frame = cap.read() curr_request_id = 0 next_request_id = 1 while True: next_ret, next_frame = cap.read() if next_ret is not True: break image = cv.resize(frame, (w, h)) image = image.transpose(2, 0, 1) # res = exec_net.infer(inputs={input_blob:[image]}) exec_net.start_async(request_id=next_request_id, inputs={input_blob:[image]}) #异步推理 # 根据状态检查 if exec_net.requests[curr_request_id].wait(-1) == 0: #等待request推理的状态 res = exec_net.requests[curr_request_id].output_blobs[out_blob].buffer ih, iw, ic = frame.shape for obj in res[0][0]: if obj[2] > 0.25: index = int(obj[1])-1 xmin = int(obj[3] * iw) ymin = int(obj[4] * ih) xmax = int(obj[5] * iw) ymax = int(obj[6] * ih) cv.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 255), 2, 8) cv.putText(frame, labels[index] + str(obj[2]), (xmin, ymin), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, 8) # 显示 cv.imshow("SSD Object Detection Async", frame) c = cv.waitKey(1) if c == 27: break # 交换数据 frame = next_frame curr_request_id, next_request_id = next_request_id, curr_request_id #相当于一直判断这两个request的推理结果 if __name__ == "__main__": ssd_video_demo()
天道酬勤 循序渐进 技压群雄