简单粗暴的tensorflow-TensorFlow Serving
# TensorFlow Serving部署 # 服务器端,安装TensorFlow Serving tensorflow_model_server \ --rest_api_port=端口号(如8501) \ --model_name=模型名 \ --model_base_path="SavedModel格式模型的文件夹绝对地址(不含版本号)" #客户端,发送请求 import json import numpy as np import requests from zh.model.utils import MNISTLoader data_loader = MNISTLoader() data = json.dumps({ "instances": data_loader.test_data[0:3].tolist() }) headers = {"content-type": "application/json"} json_response = requests.post( 'http://localhost:8501/v1/models/MLP:predict', data=data, headers=headers) predictions = np.array(json.loads(json_response.text)['predictions']) print(np.argmax(predictions, axis=-1)) print(data_loader.test_label[0:10])
天道酬勤 循序渐进 技压群雄