简单粗暴的tensorflow-TensorBoard可视化

# tensorboard可视化参数
summary_writer = tf.summary.create_file_writer('./tensorboard')     #存放 TensorBoard 的记录文件
# 开始模型训练
for batch_index in range(num_batches):
    # ...(训练代码,当前batch的损失值放入变量loss中)
    with summary_writer.as_default():                               # 希望使用的记录器
        tf.summary.scalar("loss", loss, step=batch_index)
        tf.summary.scalar("MyScalar", my_scalar, step=batch_index)  # 还可以添加其他自定义的变量
# 启动tensorboard
tensorboard --logdir=./tensorboard
# 访问客户端 
http://name-of-your-computer:6006



# 开启trace,查看Graph 和 Profile 信息 
tf.summary.trace_on(graph=True, profiler=True)  # 开启Trace,可以记录图结构和profile信息
# 进行训练
with summary_writer.as_default():
    tf.summary.trace_export(name="model_trace", step=0, profiler_outdir=log_dir)    # 保存Trace信息到文件

import tensorflow as tf
from zh.model.mnist.mlp import MLP
from zh.model.utils import MNISTLoader

num_batches = 1000
batch_size = 50
learning_rate = 0.001
log_dir = 'tensorboard'
model = MLP()
data_loader = MNISTLoader()
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
summary_writer = tf.summary.create_file_writer(log_dir)     # 实例化记录器
tf.summary.trace_on(profiler=True)  # 开启Trace(可选)
for batch_index in range(num_batches):
    X, y = data_loader.get_batch(batch_size)
    with tf.GradientTape() as tape:
        y_pred = model(X)
        loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)
        loss = tf.reduce_mean(loss)
        print("batch %d: loss %f" % (batch_index, loss.numpy()))
        with summary_writer.as_default():                           # 指定记录器
            tf.summary.scalar("loss", loss, step=batch_index)       # 将当前损失函数的值写入记录器
    grads = tape.gradient(loss, model.variables)
    optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))
with summary_writer.as_default():
    tf.summary.trace_export(name="model_trace", step=0, profiler_outdir=log_dir)    # 保存Trace信息到文件(可选)
posted @ 2022-02-17 15:33  wuyuan2011woaini  阅读(83)  评论(0编辑  收藏  举报