pycharts-从0开始美化一个图表

目标效果

这个是Echarts官方的可视化作品, 点我跳转,今天我们就尝试下通过pyecharts能否实现一样的效果~

qb3lq9g6yf

数据源

每项数据包含5个值,分别代表人均GDP,人均寿命,GDP总量,国家,年份

# 1990 & 2015年各国GDP&寿命

data = [[[28604, 77, 17096869, 'Australia', 1990],
         [31163, 77.4, 27662440, 'Canada', 1990],
         [1516, 68, 1154605773, 'China', 1990],
         [13670, 74.7, 10582082, 'Cuba', 1990],
         [28599, 75, 4986705, 'Finland', 1990],
         [29476, 77.1, 56943299, 'France', 1990],
         [31476, 75.4, 78958237, 'Germany', 1990],
         [28666, 78.1, 254830, 'Iceland', 1990],
         [1777, 57.7, 870601776, 'India', 1990],
         [29550, 79.1, 122249285, 'Japan', 1990],
         [2076, 67.9, 20194354, 'North Korea', 1990],
         [12087, 72, 42972254, 'South Korea', 1990],
         [24021, 75.4, 3397534, 'New Zealand', 1990],
         [43296, 76.8, 4240375, 'Norway', 1990],
         [10088, 70.8, 38195258, 'Poland', 1990],
         [19349, 69.6, 147568552, 'Russia', 1990],
         [10670, 67.3, 53994605, 'Turkey', 1990],
         [26424, 75.7, 57110117, 'United Kingdom', 1990],
         [37062, 75.4, 252847810, 'United States', 1990]],
        [[44056, 81.8, 23968973, 'Australia', 2015],
         [43294, 81.7, 35939927, 'Canada', 2015],
         [13334, 76.9, 1376048943, 'China', 2015],
         [21291, 78.5, 11389562, 'Cuba', 2015],
         [38923, 80.8, 5503457, 'Finland', 2015],
         [37599, 81.9, 64395345, 'France', 2015],
         [44053, 81.1, 80688545, 'Germany', 2015],
         [42182, 82.8, 329425, 'Iceland', 2015],
         [5903, 66.8, 1311050527, 'India', 2015],
         [36162, 83.5, 126573481, 'Japan', 2015],
         [1390, 71.4, 25155317, 'North Korea', 2015],
         [34644, 80.7, 50293439, 'South Korea', 2015],
         [34186, 80.6, 4528526, 'New Zealand', 2015],
         [64304, 81.6, 5210967, 'Norway', 2015],
         [24787, 77.3, 38611794, 'Poland', 2015],
         [23038, 73.13, 143456918, 'Russia', 2015],
         [19360, 76.5, 78665830, 'Turkey', 2015],
         [38225, 81.4, 64715810, 'United Kingdom', 2015],
         [53354, 79.1, 321773631, 'United States', 2015]]]
画一个散点图

先画一个散点图来展示1990年的数据~

为什么不一起添加1990年和2015年的数据呢?

因为在直角坐标系数据中,你必须公用一个x轴的数据才能一起添加
这两个年份的x轴数据(人均GDP)显然是不一样的,所以只能分别绘制之后然后通过overlap层叠在一起~

scatter = (Scatter()
           .add_xaxis([i[0] for i in data[0]])
           .add_yaxis("1990年", [[i[1]] for i in data[0]])
           )
scatter.render_notebook()


canvas

坐标轴配置

上一步后数据貌似没有展示出来,不要着急,接着往下做

  1. 设置坐标轴类型为value

  2. 顺便设置一个坐标轴名称~

scatter = (Scatter()
           .add_xaxis([i[0] for i in data[0]])
           .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]])
           .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value"),
                            xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"))
           )
scatter.render_notebook()


canvas

提示框配置

这部分与原效果不一样,Echarts中只显示了国家名称,我这边会通过js形式将数据全部显示到提示框中~

将鼠标移到图形上,我们便能看到各项数据值了~

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""
            
            
scatter = (Scatter()
           .add_xaxis([i[0] for i in data[0]])
           .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]])
           .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value"),
                            xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"),
                            tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js)))
           )
scatter.render_notebook()

canvas

数据项标签配置

散点多的时候标签会很乱,这一步关闭标签显示~

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""
            
            
scatter = (Scatter()
           .add_xaxis([i[0] for i in data[0]])
           .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]], 
                       # 关闭标签显示
                       label_opts=opts.LabelOpts(is_show=False))
           .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value"),
                            xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"),
                            tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js)))
           )
scatter.render_notebook()

canvas

图形颜色配置

按照Echarts中颜色的配置,设置径向渐变配色~

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""
            
            
# 配色方案直接从Echarts投过来就好 
item_color_js = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                                        offset: 0,
                                        color: 'rgb(251, 118, 123)'
                                    }, {
                                        offset: 1,
                                        color: 'rgb(204, 46, 72)'
                                    }])"""           
            
scatter = (Scatter()
           .add_xaxis([i[0] for i in data[0]])
           .add_yaxis("1990年", [[i[1], i[3], i[2]] for i in data[0]], 
                       label_opts=opts.LabelOpts(is_show=False),
                       # 设置图形颜色
                       itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js)))
           .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value"),
                            xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"),
                            tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js)))
           )
scatter.render_notebook()

canvas

画另一个散点图

画另一个散点图展示2015年的数据,除了图形颜色不一样,其他配置均与上一个散点图一致~

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""
            
            

item_color_js = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                                        offset: 0,
                                        color: 'rgb(129, 227, 238)'
                                    }, {
                                        offset: 1,
                                        color: 'rgb(25, 183, 207)'
                                    }])"""         
            
scatter = (Scatter()
           .add_xaxis([i[0] for i in data[1]])
           .add_yaxis("2015年", [[i[1], i[3], i[2]] for i in data[1]], 
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js)))
           .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value"),
                            xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"),
                            tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js)))
           )
scatter.render_notebook()

canvas

多图层叠

将上面画好的两个图层叠在一起,是不是有点模样了~

因为两个图是共用全局配置的,所以只需要保留一个图的全局配置项就可以了~

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""
            

item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                                        offset: 0,
                                        color: 'rgb(251, 118, 123)'
                                    }, {
                                        offset: 1,
                                        color: 'rgb(204, 46, 72)'
                                    }])"""           

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                                        offset: 0,
                                        color: 'rgb(129, 227, 238)'
                                    }, {
                                        offset: 1,
                                        color: 'rgb(25, 183, 207)'
                                    }])"""  

            
scatter1 = (Scatter()
           .add_xaxis([i[0] for i in data[0]])
           .add_yaxis("1990年", [[i[1], i[3], i[2]] for i in data[0]], 
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_1)))
           .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value"),
                            xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"),
                            tooltip_opts = opts.TooltipOpts(formatter=JsCode(tool_js)))
           )
           
           
scatter2 = (Scatter()
           .add_xaxis([i[0] for i in data[1]])
           .add_yaxis("2015年", [[i[1], i[3], i[2]] for i in data[1]], 
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_2)))
           )


scatter1.overlap(scatter2)           
scatter1.render_notebook()

canvas

设置Y轴起始点

默认坐标轴起始都是0,但这样会让所有的图形都挤到一块了不好区分,所以这边将Y轴的起始位置修改一下~

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""


item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(251, 118, 123)'
            }, {
                offset: 1,
                color: 'rgb(204, 46, 72)'
            }])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(129, 227, 238)'
            }, {
                offset: 1,
                color: 'rgb(25, 183, 207)'
            }])"""




scatter1 = (Scatter()
            .add_xaxis([i[0] for i in data[0]])
            .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]],
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color0='rgba(25, 100, 150, 0.5)', color=JsCode(item_color_js_1)))
            .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value", 
                                                      # 默认为False,即起始为0  
                                                      is_scale=True),
                             xaxis_opts=opts.AxisOpts(
                name='人均GDP', type_="value"),
    tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)))
)


scatter2 = (Scatter()
            .add_xaxis([i[0] for i in data[1]])
            .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]],
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_2)))
            )


scatter1.overlap(scatter2)
scatter1.render_notebook()

canvas

图形大小配置

到这一步其实我们一直没有用到GDP总量数据,这一步将GDP总量的数据映射到图形大小;

这里需要注意一下,正常情况下我们通过视觉组件去配置就完全OK的,但这里为了与原始效果一样,咱们采取通过执行JS函数来设置图形大小~

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""


item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(251, 118, 123)'
            }, {
                offset: 1,
                color: 'rgb(204, 46, 72)'
            }])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(129, 227, 238)'
            }, {
                offset: 1,
                color: 'rgb(25, 183, 207)'
            }])"""

# 这个函数会根据GDP总量的数据计算一个数值,用于配置图形大小
symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}"""



scatter1 = (Scatter()
            .add_xaxis([i[0] for i in data[0]])
            .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]],
                       # 这里配置图形大小,根据GDP总量计算出symbol_size
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color0='rgba(25, 100, 150, 0.5)', color=JsCode(item_color_js_1)))
            .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value", is_scale=True),
                             xaxis_opts=opts.AxisOpts(
                name='人均GDP', type_="value"),
    tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)))
)


scatter2 = (Scatter()
            .add_xaxis([i[0] for i in data[1]])
            .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]],
                       # 这里配置图形大小,根据GDP总量计算出symbol_size
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=opts.ItemStyleOpts(color=JsCode(item_color_js_2)))
            )


scatter1.overlap(scatter2)
scatter1.render_notebook()

canvas

图形阴影效果

在pyecharts中ItemStyleOpts其实是没包含阴阳参数配置的,不过对于Pyecharts中的参数其实都支持直接传入如下字典形式来配置的。

item_style = {  
    'shadowBlur': 10,  
    'shadowColor': 'rgba(120, 36, 50, 0.5)',  
    'shadowOffsetY': 5,  
    'color': JsCode(item_color_js_1)  
}

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""

item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(251, 118, 123)'
            }, {
                offset: 1,
                color: 'rgb(204, 46, 72)'
            }])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(129, 227, 238)'
            }, {
                offset: 1,
                color: 'rgb(25, 183, 207)'
            }])"""

symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}"""

# 图元样式配置,通过字典传入,包含阴影的设置
item_style_1 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_1)
}

# 图元样式配置,通过字典传入
item_style_2 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_2)
}


scatter1 = (Scatter()
            .add_xaxis([i[0] for i in data[0]])
            .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       # 这里传入
                       itemstyle_opts=item_style_1)
            .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value", is_scale=True),
                             xaxis_opts=opts.AxisOpts(
                name='人均GDP', type_="value"),
    tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)))
)


scatter2 = (Scatter()
            .add_xaxis([i[0] for i in data[1]])
            .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       # 这里传入
                       itemstyle_opts=item_style_2)
            )


scatter1.overlap(scatter2)
scatter1.render_notebook()


canvas

图形背景颜色配置

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""


item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(251, 118, 123)'
            }, {
                offset: 1,
                color: 'rgb(204, 46, 72)'
            }])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(129, 227, 238)'
            }, {
                offset: 1,
                color: 'rgb(25, 183, 207)'
            }])"""

symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}"""

item_style_1 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_1)
}

item_style_2 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_2)
}

# 直接偷echarts的配色方案
bg_color_js = """
new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{
        offset: 0,
        color: '#f7f8fa'
    }, {
        offset: 1,
        color: '#cdd0d5'
    }])"""

scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js)))
            .add_xaxis([i[0] for i in data[0]])
            .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=item_style_1)
            .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value", is_scale=True),
                             xaxis_opts=opts.AxisOpts(
                name='人均GDP', type_="value"),
    tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)))
)


scatter2 = (Scatter()
            .add_xaxis([i[0] for i in data[1]])
            .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=item_style_2)
            )


scatter1.overlap(scatter2)
scatter1.render_notebook()


canvas

图形长/宽设置
tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""


item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(251, 118, 123)'
            }, {
                offset: 1,
                color: 'rgb(204, 46, 72)'
            }])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(129, 227, 238)'
            }, {
                offset: 1,
                color: 'rgb(25, 183, 207)'
            }])"""

symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}"""

item_style_1 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_1)
}

item_style_2 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_2)
}

bg_color_js = """
new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{
        offset: 0,
        color: '#f7f8fa'
    }, {
        offset: 1,
        color: '#cdd0d5'
    }])"""

scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js),
                                            # 长宽设置
                                            width='1000px', height='800px'))
            .add_xaxis([i[0] for i in data[0]])
            .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=item_style_1)
            .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value", is_scale=True),
                             xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value"),
                            tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)),
                            legend_opts=opts.LegendOpts(is_show=True, pos_right=10))
)


scatter2 = (Scatter()
            .add_xaxis([i[0] for i in data[1]])
            .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=item_style_2)
            )


scatter1.overlap(scatter2)
scatter1.render_notebook()

canvas

添加分割线

这里注意线性配置里设置为dashed~

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""


item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(251, 118, 123)'
            }, {
                offset: 1,
                color: 'rgb(204, 46, 72)'
            }])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(129, 227, 238)'
            }, {
                offset: 1,
                color: 'rgb(25, 183, 207)'
            }])"""

symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}"""

item_style_1 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_1)
}

item_style_2 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_2)
}

bg_color_js = """
new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{
        offset: 0,
        color: '#f7f8fa'
    }, {
        offset: 1,
        color: '#cdd0d5'
    }])"""

scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js),width='1000px', height='800px'))
            .add_xaxis([i[0] for i in data[0]])
            .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=item_style_1)
            .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value", is_scale=True,
                                                     splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed'))),
                             xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value", 
                                                     splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed'))),
                             tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)))
            )


scatter2 = (Scatter()
            .add_xaxis([i[0] for i in data[1]])
            .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=item_style_2)
            )


scatter1.overlap(scatter2)
scatter1.render_notebook()

canvas

添加标题,完工!

添加标题,顺便将图例位置调到右边,完工!!!

tool_js = """function (param) {return param.seriesName + ' — ' +param.data[3]+'<br/>' 
            +'人均GDP: '+param.data[0]+' 美元<br/>'
            +'GDP总量: '+param.data[2]+' 美元<br/>'
            +'人均寿命: '+param.data[1]+'岁';}"""


item_color_js_1 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(251, 118, 123)'
            }, {
                offset: 1,
                color: 'rgb(204, 46, 72)'
            }])"""

item_color_js_2 = """new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                offset: 0,
                color: 'rgb(129, 227, 238)'
            }, {
                offset: 1,
                color: 'rgb(25, 183, 207)'
            }])"""

symbol_js = """function (data) {return Math.sqrt(data[2]) / 5e2;}"""

item_style_1 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_1)
}

item_style_2 = {
    'shadowBlur': 10,
    'shadowColor': 'rgba(120, 36, 50, 0.5)',
    'shadowOffsetY': 5,
    'color': JsCode(item_color_js_2)
}

bg_color_js = """
new echarts.graphic.RadialGradient(0.3, 0.3, 0.8, [{
        offset: 0,
        color: '#f7f8fa'
    }, {
        offset: 1,
        color: '#cdd0d5'
    }])"""

scatter1 = (Scatter(init_opts=opts.InitOpts(bg_color=JsCode(bg_color_js),width='1000px', height='800px'))
            .add_xaxis([i[0] for i in data[0]])
            .add_yaxis("1990年", [[i[1], i[2], i[3]] for i in data[0]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=item_style_1)
            .set_global_opts(yaxis_opts=opts.AxisOpts(name='人均寿命', type_="value", is_scale=True,
                                                     splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed'))),
                             xaxis_opts=opts.AxisOpts(name='人均GDP', type_="value", 
                                                     splitline_opts=opts.SplitLineOpts(is_show=True, linestyle_opts=opts.LineStyleOpts(type_='dashed'))),
                             tooltip_opts=opts.TooltipOpts(formatter=JsCode(tool_js)),
                             legend_opts=opts.LegendOpts(is_show=True, pos_right=10),
                             title_opts=opts.TitleOpts(title="1990 与 2015 年各国家人均寿命与 GDP"))
            )


scatter2 = (Scatter()
            .add_xaxis([i[0] for i in data[1]])
            .add_yaxis("2015年", [[i[1], i[2], i[3]] for i in data[1]],
                       symbol_size=JsCode(symbol_js),
                       label_opts=opts.LabelOpts(is_show=False),
                       itemstyle_opts=item_style_2)
            )


scatter1.overlap(scatter2)
scatter1.render_notebook()

canvas

posted @ 2022-01-11 11:48  wuyuan2011woaini  阅读(305)  评论(0编辑  收藏  举报