Hadoop基础——优化策略

一、MapReduce 跑的慢的原因

  1.Mapreduce 程序效率的瓶颈在于两点:

    1)计算机性能

      CPU、内存、磁盘健康、网络

    2I/O 操作优化

      (1)数据倾斜

      (2mapreduce数设置不合理

      (3map运行时间太长,导致reduce等待过久

      (4)小文件过多

      (5大量的不可分块的超大文件

      (6spill次数过多

      (7merge次数过多等。

二、MapReduce优化方法

    MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。

 1.数据输入

    (1)合并小文件:在执行mr任务前将小文件进行合并,大量的小文件会产生大量的map任务,增大map任务装载次数,而任务的装载比较耗时,从而导致mr运行较慢。

    (2)采用CombineTextInputFormat来作为输入,解决输入端大量小文件场景。

 2.Map阶段

    1)减少溢写spill次数:通过调整io.sort.mbsort.spill.percent参数值,增大触发spill的内存上限,减少spill次数,从而减少磁盘IO

    2)减少合并merge次数:通过调整io.sort.factor参数,增大merge的文件数目,减少merge的次数,从而缩短mr处理时间。

    3)在map之后,不影响业务逻辑前提下,先进行combine处理,减少 I/O

 3.Reduce阶段

    1)合理设置mapreduce:两个都不能设置太少,也不能设置太多。太少,会导致task等待,延长处理时间;太多,会导致 mapreduce任务间竞争资源,造成处理超时等错误。

    2)设置mapreduce共存:调整slowstart.completedmaps参数,使map运行到一定程度后,reduce也开始运行,减少reduce的等待时间。

    3规避使用reduce因为reduce在用于连接数据集的时候将会产生大量的网络消耗。

    4)合理设置reduce端的buffer默认情况下,数据达到一个阈值的时候,buffer中的数据就会写入磁盘,然后reduce会从磁盘中获得所有的数据。也就是说,bufferreduce是没有直接关联的,中间多个一个写磁盘->读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得buffer中的一部分数据可以直接输送到reduce,从而减少IO开销:mapred.job.reduce.input.buffer.percent,默认为0.0。当值大于0的时候,会保留指定比例的内存读buffer中的数据直接拿给reduce使用。这样一来,设置buffer需要内存,读取数据需要内存,reduce计算也要内存,所以要根据作业的运行情况进行调整。

 4.I/O优化

 

    1采用数据压缩的方式,减少网络IO的时间。安装SnappyLZO压缩编码器

    2使用SequenceFile二进制文件

5.数据倾斜问题

  1)数据倾斜现象

    数据频率倾斜——某一个区域的数据量要远远大于其他区域。

    数据大小倾斜——部分记录的大小远远大于平均值。

   方法1:抽样和范围分区

    可以通过对原始数据进行抽样得到的结果集来预设分区边界值。

  方法2:自定义分区

    基于输出键的背景知识进行自定义分区。例如,如果map输出键的单词来源于一本书。且其中某几个专业词汇较多。那么就可以自定义分区将这这些专业词汇发送给固定的一部分reduce实例。而将其他的都发送给剩余的reduce实例。

  方法3Combine

    使用Combine可以大量地减小数据倾斜。在可能的情况下,combine的目的就是聚合并精简数据。

  方法4采用Map Join尽量避免Reduce Join

6.常用的调优参数

  1资源相关参数

    (1)以下参数是在用户自己的mr应用程序中配置就可以生效(mapred-default.xml)

配置参数

参数说明

mapreduce.map.memory.mb

一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

mapreduce.reduce.memory.mb

一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

mapreduce.map.cpu.vcores

每个Map task可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.cpu.vcores

每个Reduce task可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.shuffle.parallelcopies

每个reducemap中拿数据的并行数。默认值是5

mapreduce.reduce.shuffle.merge.percent

buffer中的数据达到多少比例开始写入磁盘。默认值0.66

mapreduce.reduce.shuffle.input.buffer.percent

buffer大小占reduce可用内存的比例。默认值0.7

mapreduce.reduce.input.buffer.percent

指定多少比例的内存用来存放buffer中的数据,默认值是0.0

    (2)应该在yarn启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)

配置参数

参数说明

yarn.scheduler.minimum-allocation-mb   1024

给应用程序container分配的最小内存

yarn.scheduler.maximum-allocation-mb   8192

给应用程序container分配的最大内存

yarn.scheduler.minimum-allocation-vcores 1

每个container申请的最小CPU核数

yarn.scheduler.maximum-allocation-vcores 32

每个container申请的最大CPU核数

yarn.nodemanager.resource.memory-mb   8192

给containers分配的最大物理内存

    (3shuffle性能优化的关键参数,应在yarn启动之前就配置好(mapred-default.xml)

配置参数

参数说明

mapreduce.task.io.sort.mb   100

shuffle的环形缓冲区大小,默认100m

mapreduce.map.sort.spill.percent   0.8

环形缓冲区溢出的阈值,默认80%

  2)容错相关参数(mapreduce性能优化)

配置参数

参数说明

mapreduce.map.maxattempts

每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4

mapreduce.reduce.maxattempts

每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4

mapreduce.task.timeout

Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

  7.HDFS文件优化方法

      1.HDFS小文件弊端

        HDFS上每个文件都要在namenode上建立一个索引,这个索引的大小约为150byte,这样当小文件比较多的时候,就会产生很多的索引文件,一方面会大量占用namenode的内存空间,另一方面就是索引文件过大是的索引速度变慢。

      2.解决方案

        1Hadoop Archive:

         是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样减少了namenode的内存使用。

        2Sequence file

         sequence file由一系列的二进制key/value组成,如果key文件名,value为文件内容,则可以将大批小文件合并成一个大文件。

        3CombineFileInputFormat

          CombineFileInputFormat是一种新的inputformat,用于将多个文件合并成一个单独的split,另外,它会考虑数据的存储位置。

        4)开启JVM重用

        对于大量小文件Job可以开启JVM重用减少45%运行时间

        JVM重用理解:一个map运行一个jvm,重用的话,在一个mapjvm上运行完毕后,jvm继续运行其他map

        具体设置mapreduce.job.jvm.numtasks值10-20之间

 

posted @ 2019-08-29 19:56  Sprio丨往昔  阅读(214)  评论(0编辑  收藏  举报