spark和hadoop比较
来源知乎
计算模型:hadoop-MapReduce,Spark-DAG(有向无环图)
评注:经常有人说Spark就是内存版的MapReduce,实际上不是的。Spark使用的DAG计算模型可以有效的减少Map和Reduce人物之间传递的数据,尤其适合反复迭代的机器学习场景。而Hadoop则更擅长批处理。不过Tez也是使用的DAG计算模型,他也是Hadoop,明眼人都知道DAG计算模型比MR更好。
评注:spark既可以仅用内存存储,也可以在HDFS上存储,即使Spark在HDFS上存储,DAG计算模型在迭代计算上还是比MR的更有效率。
我并不觉得这两个及系统又大多的矛盾,只不过Spark一直宣称比hadoop快而已。实际上从应用场景上区分,Hadoop更适合做批处理,而Spark更适合做需要反复迭代的机器学习。
hadoop:只提供两个操作,Map和Reduce,表达力欠缺。
spark:提供很多转换和动作,很多基本操作如Join,GroupBy已经在RDD转换和动作中实现。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux glibc自带哈希表的用例及性能测试
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· 手把手教你在本地部署DeepSeek R1,搭建web-ui ,建议收藏!
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 数据库服务器 SQL Server 版本升级公告
· C#/.NET/.NET Core技术前沿周刊 | 第 23 期(2025年1.20-1.26)
· 程序员常用高效实用工具推荐,办公效率提升利器!