逻辑回归&&code
没有正则化项的时候的二分类
#-*-coding=utf-8-*- from numpy import loadtxt,where, transpose import matplotlib.pyplot as plt from ipykernel.pylab.backend_inline import show import numpy as np from scipy.optimize import minimize def sigmoid(x): return 1.0/(1+np.e**(-1.0*x)) def cost(theat,x,y): m=len(x) J=-(1.0/m)*(transpose(y).dot(np.log(sigmoid(x.dot(theat))))+transpose(1-y).dot(np.log(1-sigmoid(x.dot(theat))))); if np.isnan(J): return(np.inf) return J def gradient(theat,x,y): m=len(x) h=sigmoid(x.dot(transpose(theat))) grad=(1.0/m)*(h-y).dot(x) return grad def gradient_two(theat,x,y,alpha=0.0001,iteration=40000000): m=len(x) for i in xrange(iteration): h=sigmoid(x.dot(theat)) grad1=theat[0]-alpha*(1.0/m)*transpose(h-y).dot(x[:,0]); grad2=theat[1]-alpha*(1.0/m)*transpose(h-y).dot(x[:,1]); grad3=theat[2]-alpha*(1.0/m)*transpose(h-y).dot(x[:,2]); theat[0],theat[1],theat[2]=grad1,grad2,grad3 print 'cost',cost(theat,x,y) print 'grad',grad1,grad2,grad3 return theat if __name__=="__main__": data=loadtxt(r'D:/机器学习/【批量下载】data1等/数据挖掘/ml_data/data1.txt',delimiter=','); x=np.c_[np.ones((len(data),1)),data[:,0:2]]; y=data[:,2] theat=np.zeros(x.shape[1]); theat=transpose(theat); theat=gradient_two(theat,x,y); #res = minimize(cost, theat, args=(x,y), jac=gradient, options={'maxiter':400}) #print res '''最后结果 theat[0]=-22.3021297062; theat[1]=0.183373208731; theat[2]=0.178329470851; ''' x1=[20,100] y1=[-(theat[0]+theat[1]*x1[0])*1.0/theat[2],-(theat[0]+theat[1]*x1[1])*1.0/theat[2]] plt.plot(x1,y1) pos=where(y==1) neg=where(y==0) plt.scatter(x[pos,1],x[pos,2],marker='o',c='b') plt.scatter(x[neg,1],x[neg,2],marker='x',c='r') plt.show()
加上正则化后的损失函数和公式(不想再写代码了,意会就可以了 ,逃。。。。