tensorflow中的kernel/Adam 变量的来源

   

原因是使用Adam优化函数时,Adam函数会创建一个Adam变量,目的是保存你使用tensorflow创建的graph中的每个可训练参数的动量,

words/_word_embeddings:0

bi-lstm/bidirectional_rnn/fw/lstm_cell/kernel:0

bi-lstm/bidirectional_rnn/fw/lstm_cell/bias:0

bi-lstm/bidirectional_rnn/bw/lstm_cell/kernel:0

bi-lstm/bidirectional_rnn/bw/lstm_cell/bias:0

proj/W:0

proj/b:0

bi-lstm_secondLayer/bidirectionalt_rnn/fw/lstm_cell/kernel:0

bi-lstm_secondLayer/bidirectional_rnn/fw/lstm_cell/bias:0

bi-lstm_secondLayer/bidirectional_rnn/bw/lstm_cell/kernel:0

bi-lstm_secondLayer/bidirectional_rnn/bw/lstm_cell/bias:0

proj_secondLayer/W:0

proj_secondLayer/b_secondLayer:0

train_step_secondLayer/beta1_power:0

train_step_secondLayer/beta2_power:0

train_step_secondLayer/words/_word_embeddings/Adam:0

train_step_secondLayer/words/_word_embeddings/Adam_1:0

train_step_secondLayer/bi-lstm/bidirectional_rnn/fw/lstm_cell/kernel/Adam:0

train_step_secondLayer/bi-lstm/bidirectional_rnn/fw/lstm_cell/kernel/Adam_1:0

train_step_secondLayer/bi-lstm/bidirectional_rnn/fw/lstm_cell/bias/Adam:0

train_step_secondLayer/bi-lstm/bidirectional_rnn/fw/lstm_cell/bias/Adam_1:0

train_step_secondLayer/bi-lstm/bidirectional_rnn/bw/lstm_cell/kernel/Adam:0

train_step_secondLayer/bi-lstm/bidirectional_rnn/bw/lstm_cell/kernel/Adam_1:0

train_step_secondLayer/bi-lstm/bidirectional_rnn/bw/lstm_cell/bias/Adam:0

train_step_secondLayer/bi-lstm/bidirectional_rnn/bw/lstm_cell/bias/Adam_1:0

train_step_secondLayer/proj/W/Adam:0

train_step_secondLayer/proj/W/Adam_1:0

train_step_secondLayer/proj/b/Adam:0

train_step_secondLayer/proj/b/Adam_1:0

train_step_secondLayer/bi-lstm_secondLayer/bidirectional_rnn/fw/lstm_cell/kernel/Adam:0

train_step_secondLayer/bi-lstm_secondLayer/bidirectional_rnn/fw/lstm_cell/kernel/Adam_1:0

train_step_secondLayer/bi-lstm_secondLayer/bidirectional_rnn/fw/lstm_cell/bias/Adam:0

train_step_secondLayer/bi-lstm_secondLayer/bidirectional_rnn/fw/lstm_cell/bias/Adam_1:0

train_step_secondLayer/bi-lstm_secondLayer/bidirectional_rnn/bw/lstm_cell/kernel/Adam:0

train_step_secondLayer/bi-lstm_secondLayer/bidirectional_rnn/bw/lstm_cell/kernel/Adam_1:0

train_step_secondLayer/bi-lstm_secondLayer/bidirectional_rnn/bw/lstm_cell/bias/Adam:0

train_step_secondLayer/bi-lstm_secondLayer/bidirectional_rnn/bw/lstm_cell/bias/Adam_1:0

train_step_secondLayer/proj_secondLayer/W/Adam:0

train_step_secondLayer/proj_secondLayer/W/Adam_1:0

train_step_secondLayer/proj_secondLayer/b_secondLayer/Adam:0

train_step_secondLayer/proj_secondLayer/b_secondLayer/Adam_1:0

posted @   simple_wxl  阅读(1430)  评论(0编辑  收藏  举报
编辑推荐:
· Linux glibc自带哈希表的用例及性能测试
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
阅读排行:
· 手把手教你在本地部署DeepSeek R1,搭建web-ui ,建议收藏!
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 数据库服务器 SQL Server 版本升级公告
· C#/.NET/.NET Core技术前沿周刊 | 第 23 期(2025年1.20-1.26)
· 程序员常用高效实用工具推荐,办公效率提升利器!
点击右上角即可分享
微信分享提示