返回顶部

几种常见的排序算法

 

 

一.选择排序

  在待排序的一组数据中,选出最小(最大)的一个数与第一个位置的数交换,然后在剩下的数中,再找最小(最大)的数与第二个位置的数交换位置,依次类推,直到第N-1个元素与第N个元素交换位置,选择排序结束。

 

 

 

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import java.util.Comparator;

public class Selection {

    private Selection() { }

    //排序
    public static void sort(Comparable[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
            int min = i;
            for (int j = i+1; j < n; j++) {
                if (less(a[j], a[min])) min = j;
            }
            exch(a, i, min);
            assert isSorted(a, 0, i);
        }
        assert isSorted(a);
    }

    //使用比较器按升序重新排列数组
    public static void sort(Object[] a, Comparator comparator) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
            int min = i;
            for (int j = i+1; j < n; j++) {
                if (less(comparator, a[j], a[min])) min = j;
            }
            exch(a, i, min);
            assert isSorted(a, comparator, 0, i);
        }
        assert isSorted(a, comparator);
    }


    //对元素进行比较
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    // 对元素进行比较
    private static boolean less(Comparator comparator, Object v, Object w) {
        return comparator.compare(v, w) < 0;
    }


    // 交换两个数据
    private static void exch(Object[] a, int i, int j) {
        Object swap = a[i];
        a[i] = a[j];
        a[j] = swap;
    }

    // 检查数组是否已排序-对调试有用。
    private static boolean isSorted(Comparable[] a) {
        return isSorted(a, 0, a.length - 1);
    }

    // 判断从lo到hi的元素是否已经有序
    private static boolean isSorted(Comparable[] a, int lo, int hi) {
        for (int i = lo + 1; i <= hi; i++)
            if (less(a[i], a[i-1])) return false;
        return true;
    }

    private static boolean isSorted(Object[] a, Comparator comparator) {
        return isSorted(a, comparator, 0, a.length - 1);
    }

    private static boolean isSorted(Object[] a, Comparator comparator, int lo, int hi) {
        for (int i = lo + 1; i <= hi; i++)
            if (less(comparator, a[i], a[i-1])) return false;
        return true;
    }

    //输出元素
    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++) {
            StdOut.println(a[i]);
        }
    }

    public static void main(String[] args) {
        String[] a = StdIn.readAllStrings();
        Selection.sort(a);
        show(a);
    }
}

 

二.插入排序

将一个记录插入到已排好序的序列中,从而得到一个新的有序序列(将序列的第一个数据看成是一个有序的子序列,然后从第二个记录逐个向该有序的子序列进行有序的插入,直至整个序列有序)

package sort;

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import java.util.Comparator;

public class Insertion {

    private Insertion() { }

    public static void sort(Comparable[] a) {
        int n = a.length;
        for (int i = 1; i < n; i++) {
            for (int j = i; j > 0 && less(a[j], a[j-1]); j--) {
                exch(a, j, j-1);
            }
            assert isSorted(a, 0, i);
        }
        assert isSorted(a);
    }

    //对lo到hi的元素进行排序
    public static void sort(Comparable[] a, int lo, int hi) {
        for (int i = lo + 1; i < hi; i++) {
            for (int j = i; j > lo && less(a[j], a[j-1]); j--) {
                exch(a, j, j-1);
            }
        }
        assert isSorted(a, lo, hi);
    }

    //使用比较器按升序重新排列数组
    public static void sort(Object[] a, Comparator comparator) {
        int n = a.length;
        for (int i = 1; i < n; i++) {
            for (int j = i; j > 0 && less(a[j], a[j-1], comparator); j--) {
                exch(a, j, j-1);
            }
            assert isSorted(a, 0, i, comparator);
        }
        assert isSorted(a, comparator);
    }

    public static void sort(Object[] a, int lo, int hi, Comparator comparator) {
        for (int i = lo + 1; i < hi; i++) {
            for (int j = i; j > lo && less(a[j], a[j-1], comparator); j--) {
                exch(a, j, j-1);
            }
        }
        assert isSorted(a, lo, hi, comparator);
    }

    public static int[] indexSort(Comparable[] a) {
        int n = a.length;
        int[] index = new int[n];
        for (int i = 0; i < n; i++)
            index[i] = i;

        for (int i = 1; i < n; i++)
            for (int j = i; j > 0 && less(a[index[j]], a[index[j-1]]); j--)
                exch(index, j, j-1);

        return index;
    }

    //对元素进行比较
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    private static boolean less(Object v, Object w, Comparator comparator) {
        return comparator.compare(v, w) < 0;
    }

    // 交换两个数据
    private static void exch(Object[] a, int i, int j) {
        Object swap = a[i];
        a[i] = a[j];
        a[j] = swap;
    }

    private static void exch(int[] a, int i, int j) {
        int swap = a[i];
        a[i] = a[j];
        a[j] = swap;
    }

    // 检查数组是否已排序-对调试有用。
    private static boolean isSorted(Comparable[] a) {
        return isSorted(a, 0, a.length);
    }

    private static boolean isSorted(Comparable[] a, int lo, int hi) {
        for (int i = lo + 1; i < hi; i++)
            if (less(a[i], a[i-1])) return false;
        return true;
    }

    private static boolean isSorted(Object[] a, Comparator comparator) {
        return isSorted(a, 0, a.length, comparator);
    }

    private static boolean isSorted(Object[] a, int lo, int hi, Comparator comparator) {
        for (int i = lo + 1; i < hi; i++)
            if (less(a[i], a[i-1], comparator)) return false;
        return true;
    }

    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++) {
            StdOut.println(a[i]);
        }
    }

    public static void main(String[] args) {
        String[] a = StdIn.readAllStrings();
        Insertion.sort(a);
        show(a);
    }
}

 

三.希尔排序

希尔排序的思想是使数组中任意间隔为h的元素都是有序的。这样的数组被称为h有序数组。换句话说,一个h有序数组就是h个互相独立的有序数组编制在一起组成的一个数组(如下图)。在进行排序的时候,如果h很大,我们能够将元素移动到很远的地方,为了实现更小的h有序创造方便,用这种方式,对于任意以1结尾的h序列,我们都能够将数组排序,这就是希尔排序。

package sort;

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

public class Shell {

    private Shell() { }

    public static void sort(Comparable[] a) {
        int n = a.length;

        int h = 1;
        while (h < n/3) h = 3*h + 1;    //1, 4, 13, 40, 121, 364, 1093, ...
        while (h >= 1) {
            for (int i = h; i < n; i++) {
                for (int j = i; j >= h && less(a[j], a[j-h]); j -= h) {
                    exch(a, j, j-h);
                }
            }
            assert isHsorted(a, h);
            h /= 3;
        }
        assert isSorted(a);
    }

    // 比较两个元素
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    // 交换 a[i] 和 a[j]
    private static void exch(Object[] a, int i, int j) {
        Object swap = a[i];
        a[i] = a[j];
        a[j] = swap;
    }

    //判断是否有序
    private static boolean isSorted(Comparable[] a) {
        for (int i = 1; i < a.length; i++)
            if (less(a[i], a[i-1])) return false;
        return true;
    }

    // 判断从h开始是否有序
    private static boolean isHsorted(Comparable[] a, int h) {
        for (int i = h; i < a.length; i++)
            if (less(a[i], a[i-h])) return false;
        return true;
    }

    // 输出元素
    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++) {
            StdOut.println(a[i]);
        }
    }

    public static void main(String[] args) {
        String[] a = StdIn.readAllStrings();
        Shell.sort(a);
        show(a);
    }
}

 

四.归并排序

1.自顶向下的归并排序

package sort;

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

public class Merge {

    private Merge() { }

    //排序函数
    public static void sort(Comparable[] a) {
        Comparable[] aux = new Comparable[a.length];
        sort(a, aux, 0, a.length-1);
        assert isSorted(a);
    }

    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid + 1, hi);
        merge(a, aux, lo, mid, hi);
    }

    private static void sort(Comparable[] a, int[] index, int[] aux, int lo, int hi) {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, index, aux, lo, mid);
        sort(a, index, aux, mid + 1, hi);
        merge(a, index, aux, lo, mid, hi);
    }

    //合并两个有序数组
    private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
        // precondition: a[lo .. mid] and a[mid+1 .. hi] are sorted subarrays
        assert isSorted(a, lo, mid);
        assert isSorted(a, mid+1, hi);

        // copy to aux[]
        for (int k = lo; k <= hi; k++) {
            aux[k] = a[k];
        }

        // merge back to a[]
        int i = lo, j = mid+1;
        for (int k = lo; k <= hi; k++) {
            if      (i > mid)              a[k] = aux[j++];
            else if (j > hi)               a[k] = aux[i++];
            else if (less(aux[j], aux[i])) a[k] = aux[j++];
            else                           a[k] = aux[i++];
        }

        // postcondition: a[lo .. hi] is sorted
        assert isSorted(a, lo, hi);
    }

    private static void merge(Comparable[] a, int[] index, int[] aux, int lo, int mid, int hi) {

        // copy to aux[]
        for (int k = lo; k <= hi; k++) {
            aux[k] = index[k];
        }

        // merge back to a[]
        int i = lo, j = mid+1;
        for (int k = lo; k <= hi; k++) {
            if      (i > mid)                    index[k] = aux[j++];
            else if (j > hi)                     index[k] = aux[i++];
            else if (less(a[aux[j]], a[aux[i]])) index[k] = aux[j++];
            else                                 index[k] = aux[i++];
        }
    }

    //v < w ?
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    //判断数组是否有序
    private static boolean isSorted(Comparable[] a) {
        return isSorted(a, 0, a.length - 1);
    }

    private static boolean isSorted(Comparable[] a, int lo, int hi) {
        for (int i = lo + 1; i <= hi; i++)
            if (less(a[i], a[i-1])) return false;
        return true;
    }

    public static int[] indexSort(Comparable[] a) {
        int n = a.length;
        int[] index = new int[n];
        for (int i = 0; i < n; i++)
            index[i] = i;

        int[] aux = new int[n];
        sort(a, index, aux, 0, n-1);
        return index;
    }

    //输出元素
    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++) {
            StdOut.println(a[i]);
        }
    }

    public static void main(String[] args) {
        String[] a = StdIn.readAllStrings();
        Merge.sort(a);
        show(a);
    }
}

 

2.自底向上的归并排序

package sort;

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

public class MergeBU {

    private MergeBU() { }

    // stably merge a[lo..mid] with a[mid+1..hi] using aux[lo..hi]
    private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {

        // copy to aux[]
        for (int k = lo; k <= hi; k++) {
            aux[k] = a[k];
        }

        // merge back to a[]
        int i = lo, j = mid+1;
        for (int k = lo; k <= hi; k++) {
            if      (i > mid)              a[k] = aux[j++];  // this copying is unneccessary
            else if (j > hi)               a[k] = aux[i++];
            else if (less(aux[j], aux[i])) a[k] = aux[j++];
            else                           a[k] = aux[i++];
        }

    }

    /**
     * Rearranges the array in ascending order, using the natural order.
     * @param a the array to be sorted
     */
    public static void sort(Comparable[] a) {
        int n = a.length;
        Comparable[] aux = new Comparable[n];
        for (int len = 1; len < n; len *= 2) {
            for (int lo = 0; lo < n-len; lo += len+len) {
                int mid  = lo+len-1;
                int hi = Math.min(lo+len+len-1, n-1);
                merge(a, aux, lo, mid, hi);
            }
        }
        assert isSorted(a);
    }

    // is v < w ?
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }


    /***************************************************************************
     *  Check if array is sorted - useful for debugging.
     ***************************************************************************/
    private static boolean isSorted(Comparable[] a) {
        for (int i = 1; i < a.length; i++)
            if (less(a[i], a[i-1])) return false;
        return true;
    }

    // print array to standard output
    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++) {
            StdOut.println(a[i]);
        }
    }

    public static void main(String[] args) {
        String[] a = StdIn.readAllStrings();
        MergeBU.sort(a);
        show(a);
    }
}

 

五.快速排序

它的基本思想是:选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

 

 

1.快速排序

package sort;

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdRandom;

public class Quick {

    private Quick() { }

    //使用自然顺序按升序重新排列数组。
    public static void sort(Comparable[] a) {
        StdRandom.shuffle(a);
        sort(a, 0, a.length - 1);
        assert isSorted(a);
    }

    // 排序 a[lo] 到 a[hi]的元素
    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi <= lo) return;
        int j = partition(a, lo, hi);
        sort(a, lo, j-1);
        sort(a, j+1, hi);
        assert isSorted(a, lo, hi);
    }

    // 分区子阵列a[lo..hi],使a[lo..j-1]<=a[j]<=a[j+1..hi]
    private static int partition(Comparable[] a, int lo, int hi) {
        int i = lo;
        int j = hi + 1;
        Comparable v = a[lo];
        while (true) {
            // 查找左边需要交换的元素
            while (less(a[++i], v)) {
                if (i == hi) break;
            }
            // 查找右边需要交换的元素
            while (less(v, a[--j])) {
                if (j == lo) break;
            }
            if (i >= j) break;
            exch(a, i, j);
        }
        exch(a, lo, j);
        return j;
    }

    //重新排列数组,使{@code a[k]}包含第k个最小键;
    public static Comparable select(Comparable[] a, int k) {
        if (k < 0 || k >= a.length) {
            throw new IllegalArgumentException("index is not between 0 and " + a.length + ": " + k);
        }
        StdRandom.shuffle(a);
        int lo = 0, hi = a.length - 1;
        while (hi > lo) {
            int i = partition(a, lo, hi);
            if      (i > k) hi = i - 1;
            else if (i < k) lo = i + 1;
            else return a[i];
        }
        return a[lo];
    }

    // is v < w ?
    private static boolean less(Comparable v, Comparable w) {
        if (v == w) return false;   // optimization when reference equals
        return v.compareTo(w) < 0;
    }

    // 交换 a[i] 和 a[j]
    private static void exch(Object[] a, int i, int j) {
        Object swap = a[i];
        a[i] = a[j];
        a[j] = swap;
    }

    //判断数组是否有序
    private static boolean isSorted(Comparable[] a) {
        return isSorted(a, 0, a.length - 1);
    }

    private static boolean isSorted(Comparable[] a, int lo, int hi) {
        for (int i = lo + 1; i <= hi; i++)
            if (less(a[i], a[i-1])) return false;
        return true;
    }

    //输出数组
    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++) {
            StdOut.println(a[i]);
        }
    }

    public static void main(String[] args) {
        String[] a = StdIn.readAllStrings();
        Quick.sort(a);
        show(a);
        assert isSorted(a);

        StdRandom.shuffle(a);

        StdOut.println();
        for (int i = 0; i < a.length; i++) {
            String ith = (String) Quick.select(a, i);
            StdOut.println(ith);
        }
    }

}

2.三向切分的快速排序

package sort;

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdRandom;

public class Quick3way {

    private Quick3way() { }

    public static void sort(Comparable[] a) {
        StdRandom.shuffle(a);
        sort(a, 0, a.length - 1);
        assert isSorted(a);
    }

    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi <= lo) return;
        int lt = lo, gt = hi;
        Comparable v = a[lo];
        int i = lo + 1;
        while (i <= gt) {
            int cmp = a[i].compareTo(v);
            if      (cmp < 0) exch(a, lt++, i++);
            else if (cmp > 0) exch(a, i, gt--);
            else              i++;
        }

        // a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi].
        sort(a, lo, lt-1);
        sort(a, gt+1, hi);
        assert isSorted(a, lo, hi);
    }

    // is v < w ?
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    // 交换 a[i] 和 a[j]
    private static void exch(Object[] a, int i, int j) {
        Object swap = a[i];
        a[i] = a[j];
        a[j] = swap;
    }

    //判断数组是否有序
    private static boolean isSorted(Comparable[] a) {
        return isSorted(a, 0, a.length - 1);
    }

    private static boolean isSorted(Comparable[] a, int lo, int hi) {
        for (int i = lo + 1; i <= hi; i++)
            if (less(a[i], a[i-1])) return false;
        return true;
    }



    // 输出数组
    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++) {
            StdOut.println(a[i]);
        }
    }

    public static void main(String[] args) {
        String[] a = StdIn.readAllStrings();
        Quick3way.sort(a);
        show(a);
    }

}

 

六.堆排序

堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。

大顶堆

 

小顶堆

 

算法演示

 

 

package sort;

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;

public class Heap {

    private Heap() { }

    public static void sort(Comparable[] pq) {
        int n = pq.length;
        for (int k = n/2; k >= 1; k--)
            sink(pq, k, n);
        while (n > 1) {
            exch(pq, 1, n--);
            sink(pq, 1, n);
        }
    }

    //下沉
    private static void sink(Comparable[] pq, int k, int n) {
        while (2*k <= n) {
            int j = 2*k;
            if (j < n && less(pq, j, j+1)) j++;
            if (!less(pq, k, j)) break;
            exch(pq, k, j);
            k = j;
        }
    }

    //比较
    private static boolean less(Comparable[] pq, int i, int j) {
        return pq[i-1].compareTo(pq[j-1]) < 0;
    }

    //交换
    private static void exch(Object[] pq, int i, int j) {
        Object swap = pq[i-1];
        pq[i-1] = pq[j-1];
        pq[j-1] = swap;
    }

    //输出元素
    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++) {
            StdOut.println(a[i]);
        }
    }

    public static void main(String[] args) {
        String[] a = StdIn.readAllStrings();
        Heap.sort(a);
        show(a);
    }
}

 

posted @ 2020-02-09 21:19  不懒人  阅读(717)  评论(0编辑  收藏  举报