python turtle 例子 海归绘图

   



 

太阳花


1 # coding=utf-8
2 import turtle
3 import time
4  
5 # 同时设置pencolor="red", fillcolor="yellow"
6 turtle.color("red", "yellow")
7  
8 # 开始填充
9 turtle.begin_fill()
10 for _ in range(50):        # 循环50次, 从0到49
11     turtle.forward(200)    # 前行200
12     turtle.left(170)       # 左转170°
13 # 结束填充
14 turtle.end_fill()
15  
16 # 不会退出, 而是等待
17 turtle.mainloop()

五角星


# coding=utf-8
import turtle
import time

turtle.pensize(5)          # 线宽
turtle.pencolor("yellow")  # 线的眼神
turtle.fillcolor("red")    # 填充颜色

def draw_5AnglesShape():
    turtle.begin_fill()
    for _ in range(5):
        turtle.forward(200)
        turtle.right(144)
    turtle.end_fill()
    time.sleep(2)

def draw_word():           # 写文字
    turtle.penup()
    turtle.goto(-150, -120)
    turtle.color("violet")
    turtle.write("五角星绘制完毕", font=('Arial', 40, 'normal'))

if __name__ == "__main__":
    draw_5AnglesShape()
    draw_word()
    turtle.mainloop()
 

彩色螺旋线


1 # coding=utf-8
2 import turtle
3  
4 from datetime import *
5 import time
6  
7 def doWork():
8     turtle.pensize(2)
9     turtle.bgcolor("black")
10     colors = ["red","yellow","purple","blue"]
11     #turtle.tracer(False)
12     for x in range(400):
13         turtle.forward(2*x)
14         turtle.color(colors[x % 4])
15         turtle.left(91)
16     #turtle.tracer(True)
17     # input()   可以有效解决闪退问题,或者下面的方法    
18  
19 if __name__ == "__main__":
20     doWork()
21     turtle.done();
22  

方形蜘蛛网


# coding=utf-8
import turtle

from datetime import *
import time

def doWork(t):
    for x in range(100):
        t.forward(x)
        t.left(90)
 
if __name__ == "__main__":
    t = turtle.Pen()
    doWork(t)
    turtle.done()

旋转的海龟


# coding=utf-8
import turtle

from datetime import *
import time

def doWork(t):
    for x in range(100):
        t.forward(x)
        t.left(91)
        
if __name__ == "__main__":
    t = turtle.Pen()
    doWork(t)

彩色的旋转的海龟


# coding=utf-8
import turtle

from datetime import *
import time

def doWork(t):
    colors = ["red", "yellow", "blue", "green"]
    for x in range(100):
        t.pencolor(colors[x%4])
        t.forward(x)
        t.left(91)
        
if __name__ == "__main__":
    t = turtle.Pen()
    doWork(t)

彩色的旋转的海龟2


# coding=utf-8
import turtle

from datetime import *
import time

def doWork(t):
    turtle.bgcolor("black")   # 修改背景颜色
    sides = 6
    colors = ["red", "yellow", "blue", "green"]
    for x in range(100):
        t.pencolor(colors[x%4])
        t.forward(x * 3/sides + x)
        t.left(360/sides + 1)
        t.width(x*sides/200)   
 
if __name__ == "__main__":
    t = turtle.Pen()
    doWork(t)

 

蟒蛇绘制


1 # coding=utf-8
2 import turtle
3 from datetime import *
4 import time
5    
6 if __name__ == "__main__":
7     # 屏幕大小为(650,300)
8     turtle.setup(650,300)
9     turtle.penup()
10     turtle.fd(-250)
11     turtle.pendown()
12     turtle.pensize(10)
13     turtle.pencolor("yellow")
14     turtle.seth(-40)
15     for i in range(4):
16         turtle.circle(40,80)
17         turtle.circle(-40,80)
18     turtle.circle(40,80/2)
19     turtle.fd(40)
20     turtle.circle(16,180)
21     turtle.fd(40 * 2/3)
22     turtle.done()

图形绘制


1 # coding=utf-8
2 import turtle
3 from datetime import *
4 import time
5  
6 if __name__ == "__main__":
7     turtle.pensize(3)
8     turtle.penup()
9     turtle.goto(-200,-50)
10     turtle.pendown()
11     turtle.begin_fill()
12     turtle.color("red")
13     turtle.circle(40, steps=3)
14     turtle.end_fill()
15  
16  
17     turtle.penup()
18     turtle.goto(-100,-50)
19     turtle.pendown()
20     turtle.begin_fill()
21     turtle.color("blue")
22     turtle.circle(40, steps=4)
23     turtle.end_fill()
24  
25     turtle.penup()
26     turtle.goto(0,-50)
27     turtle.pendown()
28     turtle.begin_fill()
29     turtle.color("green")
30     turtle.circle(40, steps=5)
31     turtle.end_fill()
32  
33     turtle.penup()
34     turtle.goto(100,-50)
35     turtle.pendown()
36     turtle.begin_fill()
37     turtle.color("yellow")
38     turtle.circle(40, steps=6)
39     turtle.end_fill()
40  
41     turtle.penup()
42     turtle.goto(200,-50)
43     turtle.pendown()
44     turtle.begin_fill()
45     turtle.color("purple")
46     turtle.circle(40)
47     turtle.end_fill()
48  
49     turtle.color("green")
50     turtle.penup()
51     turtle.goto(-100,50)
52     turtle.pendown()
53     turtle.write( u"彩色简单图形".encode("utf-8"),
54                   font = ("Times", 18, "bold") )
55     turtle.hideturtle()
56  
57     turtle.done()
58  

三角塔的绘制


#encoding: utf8



import turtle



stepSize = 30



def draw1GreenTriangle():

	""" 画有一个绿色的小小三角形

	从图片上看, 整个图形就是由27个小三角形组成的

	"""

	global stepSize

	turtle.color("black", "green")    # 笔的颜色的黑色, 填充是绿色 

	turtle.begin_fill()               # 开始填充

	turtle.setheading(240)            # 头向左下

	turtle.forward(stepSize)          # 移动指定个单位

	turtle.left(120)                  # 逆时针旋转120度

	turtle.forward(stepSize)          # 移动10个单位

	turtle.left(120)                  # 逆时针旋转120度

	turtle.forward(stepSize)          # 移动10个单位

	turtle.end_fill()                 # 结束填充

	

def draw3GreenTriangle():

	""" 就是画三个小三角形

	原图片可以看做是9个这样的3个三角形组成的

	"""

	draw1GreenTriangle();

	turtle.left(120)                  # 逆时针旋转120度

	turtle.forward(stepSize)          # 移动指定单位

	draw1GreenTriangle();             # 画第二个三角形

	turtle.setheading(0)              # 头向左

	turtle.forward(stepSize)          # 移动指定单位

	draw1GreenTriangle();             # 画第三个三角形

	turtle.forward(stepSize)          # 移动指定个单位

	

def draw9GreenTriangle():

	""" 就是画九个三角形

	原图片可以看做是3个这样的9个三角形组成的

	"""

	draw3GreenTriangle()              # 画第一个三个小三角形

	turtle.left(120)                  # 逆时针旋转120度

	turtle.forward(stepSize*2)        # 移动2个指定单位

	draw3GreenTriangle()              # 画第二个三个小三角形

	turtle.setheading(0)              # 头向左

	turtle.forward(stepSize*2)        # 移动2个指定单位

	draw3GreenTriangle()              # 画第三个三个小三角形

	turtle.forward(stepSize*2)        # 移动2个指定单位

	

	

def draw27GreenTriangle():

	""" 画出最终图像, 就是27个小三角形, 

	其由三个draw9GreenTriangle()的结果组成

	"""

	draw9GreenTriangle()

	turtle.left(120)                  # 逆时针旋转120度

	turtle.forward(stepSize*4)        # 移动4个指定单位

	draw9GreenTriangle()

	turtle.setheading(0)              # 头向左

	turtle.forward(stepSize*4)        # 移动4个指定单位

	draw9GreenTriangle()

	

if __name__ == "__main__":

	draw27GreenTriangle();

	turtle.mainloop()

小猪佩奇


# coding:utf-8

import turtle as t

def drawNose():
    # 配置画笔属性
    t.pensize(4)
    t.hideturtle()
    t.colormode(255)
    t.color((255,155,192),"pink")
    t.setup(840,500)
    t.speed(10)
    
    # 绘制鼻圈
    t.pu()
    t.goto(-100,100)
    t.pd()
    t.seth(-30)
    t.begin_fill()
    a=0.4
    for i in range(120):
        if 0<=i<30 or 60<=i<90:
            a=a+0.08
            t.lt(3) #向左转3度
            t.fd(a) #向前走a的步长
        else:
            a=a-0.08
            t.lt(3)
            t.fd(a)
    t.end_fill()
    
    # 绘制鼻孔
    t.pu()
    t.seth(90)
    t.fd(25)
    t.seth(0)
    t.fd(10)
    t.pd()
    t.pencolor(255,155,192)
    t.seth(10)
    t.begin_fill()
    t.circle(5)
    t.color(160,82,45)
    t.end_fill()
    
    t.pu()
    t.seth(0)
    t.fd(20)
    t.pd()
    t.pencolor(255,155,192)
    t.seth(10)
    t.begin_fill()
    t.circle(5)
    t.color(160,82,45)
    t.end_fill()

def drawHead():
    # 绘制吹风机头
    t.color((255,155,192),"pink")
    t.pu()
    t.seth(90)
    t.fd(41)
    t.seth(0)
    t.fd(0)
    t.pd()
    t.begin_fill()
    t.seth(180)
    t.circle(300,-30)
    t.circle(100,-60)
    t.circle(80,-100)
    t.circle(150,-20)
    t.circle(60,-95)
    t.seth(161)
    t.circle(-300,15)
    t.pu()
    t.goto(-100,100)
    t.pd()
    t.seth(-30)
    a=0.4
    for i in range(60):
        if 0<=i<30 or 60<=i<90:
            a=a+0.08
            t.lt(3) #向左转3度
            t.fd(a) #向前走a的步长
        else:
            a=a-0.08
            t.lt(3)
            t.fd(a)
    t.end_fill()


def drawEar():
    # 绘制耳朵
    t.color((255,155,192),"pink")
    t.pu()
    t.seth(90)
    t.fd(-7)
    t.seth(0)
    t.fd(70)
    t.pd()
    t.begin_fill()
    t.seth(100)
    t.circle(-50,50)
    t.circle(-10,120)
    t.circle(-50,54)
    t.end_fill()
    
    t.pu()
    t.seth(90)
    t.fd(-12)
    t.seth(0)
    t.fd(30)
    t.pd()
    t.begin_fill()
    t.seth(100)
    t.circle(-50,50)
    t.circle(-10,120)
    t.circle(-50,56)
    t.end_fill()def drawEye():# 绘制眼睛
    t.color((255,155,192),"white")
    t.pu()
    t.seth(90)
    t.fd(-20)
    t.seth(0)
    t.fd(-95)
    t.pd()
    t.begin_fill()
    t.circle(15)
    t.end_fill()
    
    t.color("black")
    t.pu()
    t.seth(90)
    t.fd(12)
    t.seth(0)
    t.fd(-3)
    t.pd()
    t.begin_fill()
    t.circle(3)
    t.end_fill()
    
    t.color((255,155,192),"white")
    t.pu()
    t.seth(90)
    t.fd(-25)
    t.seth(0)
    t.fd(40)
    t.pd()
    t.begin_fill()
    t.circle(15)
    t.end_fill()
    
    t.color("black")
    t.pu()
    t.seth(90)
    t.fd(12)
    t.seth(0)
    t.fd(-3)
    t.pd()
    t.begin_fill()
    t.circle(3)
    t.end_fill()def drawCheek():# 绘制腮
    t.color((255,155,192))
    t.pu()
    t.seth(90)
    t.fd(-95)
    t.seth(0)
    t.fd(65)
    t.pd()
    t.begin_fill()
    t.circle(30)
    t.end_fill()def drawMouth():# 绘制嘴
    t.color(239,69,19)
    t.pu()
    t.seth(90)
    t.fd(15)
    t.seth(0)
    t.fd(-100)
    t.pd()
    t.seth(-80)
    t.circle(30,40)
    t.circle(40,80)def drawFigure():# 绘制体型
    t.color("red",(255,99,71))
    t.pu()
    t.seth(90)
    t.fd(-20)
    t.seth(0)
    t.fd(-78)
    t.pd()
    t.begin_fill()
    t.seth(-130)
    t.circle(100,10)
    t.circle(300,30)
    t.seth(0)
    t.fd(230)
    t.seth(90)
    t.circle(300,30)
    t.circle(100,3)
    t.color((255,155,192),(255,100,100))
    t.seth(-135)
    t.circle(-80,63)
    t.circle(-150,24)
    t.end_fill()def drawHand():# 绘制小手
    t.color((255,155,192))
    t.pu()
    t.seth(90)
    t.fd(-40)
    t.seth(0)
    t.fd(-27)
    t.pd()
    t.seth(-160)
    t.circle(300,15)
    t.pu()
    t.seth(90)
    t.fd(15)
    t.seth(0)
    t.fd(0)
    t.pd()
    t.seth(-10)
    t.circle(-20,90)
    
    t.pu()
    t.seth(90)
    t.fd(30)
    t.seth(0)
    t.fd(237)
    t.pd()
    t.seth(-20)
    t.circle(-300,15)
    t.pu()
    t.seth(90)
    t.fd(20)
    t.seth(0)
    t.fd(0)
    t.pd()
    t.seth(-170)
    t.circle(20,90)def drawLeg():# 绘制腿脚
    t.pensize(10)
    t.color((240,128,128))
    t.pu()
    t.seth(90)
    t.fd(-75)
    t.seth(0)
    t.fd(-180)
    t.pd()
    t.seth(-90)
    t.fd(40)
    t.seth(-180)
    t.color("black")
    t.pensize(15)
    t.fd(20)
    
    t.pensize(10)
    t.color((240,128,128))
    t.pu()
    t.seth(90)
    t.fd(40)
    t.seth(0)
    t.fd(90)
    t.pd()
    t.seth(-90)
    t.fd(40)
    t.seth(-180)
    t.color("black")
    t.pensize(15)
    t.fd(20)def drawTail():# 绘制尾巴
    t.pensize(4)
    t.color((255,155,192))
    t.pu()
    t.seth(90)
    t.fd(70)
    t.seth(0)
    t.fd(95)
    t.pd()
    t.seth(0)
    t.circle(70,20)
    t.circle(10,330)
    t.circle(70,30)if __name__ =="__main__":
    drawNose()
    drawHead()
    drawEar()
    drawEye()
    drawCheek()
    drawMouth()
    drawFigure()
    drawHand()
    drawLeg()
    drawTail()
    t.done()

玫瑰花


#encoding: utf8



from turtle import *

import time

 

# 设置屏幕尺寸为600*800

# 窗口位置为(1000,100)

setup(600,800,1000, 100)



speed(0)

penup()

seth(90)

fd(340)

seth(0)

pendown()

 

speed(5)

begin_fill()

fillcolor('red')

circle(50,30)

 

for i in range(10):

    fd(1)

    left(10)

 

circle(40,40)

 

for i in range(6):

    fd(1)

    left(3)

 

circle(80,40)

 

for i in range(20):

    fd(0.5)

    left(5)

 

circle(80,45)

 

for i in range(10):

    fd(2)

    left(1)

     

circle(80,25)

 

for i in range(20):

    fd(1)

    left(4)

 

circle(50,50)

 

time.sleep(0.1)

 

circle(120,55)

 

speed(0)

 

seth(-90)

fd(70)

 

right(150)

fd(20)

 

left(140)

circle(140,90)

 

left(30)

circle(160,100)

 

left(130)

fd(25)

 

penup()

right(150)

circle(40,80)

pendown()

 

left(115)

fd(60)

 

penup()

left(180)

fd(60)

pendown()

 

end_fill()

 

right(120)

circle(-50,50)

circle(-20,90)

 

speed(1)

fd(75)

 

speed(0)

circle(90,110)

 

penup()

left(162)

fd(185)

left(170)

pendown()

circle(200,10)

circle(100,40)

circle(-52,115)

left(20)

circle(100,20)

circle(300,20)

speed(1)

fd(250)

 

penup()

speed(0)

left(180)

fd(250)

circle(-300,7)

right(80)

circle(200,5)

pendown()

 

left(60)

begin_fill()

fillcolor('green')

circle(-80,100)

right(90)

fd(10)

left(20)

circle(-63,127)

end_fill()

 

penup()

left(50)

fd(20)

left(180)

 

pendown()

circle(200,25)

 

penup()

right(150)

 

fd(180)

 

right(40)

pendown()

begin_fill()

fillcolor('green')

circle(-100,80)

right(150)

fd(10)

left(60)

circle(-80,98)

end_fill()

 

penup()

left(60)

fd(13)

left(180)

 

pendown()

speed(1)

circle(-200,23)

 

 

 

exitonclick()

 

 

绘制雪花

科赫曲线是de Rham曲线的特例 
给定线段AB,科赫曲线可以由以下步骤生成 
将线段分成三等份(AC,CD,DB) 
以CD为底,向外(内外随意)画一个等边三角形DMC 
将线段CD移去 
分别对AC,CM,MD,DB重复1~3 


太极阴阳


# coding:utf-8
from turtle import *

def yin(radius, color1, color2):
    width(3)
    color("black", color1)
    begin_fill()
    circle(radius/2., 180)
    circle(radius, 180)
    left(180)
    circle(-radius/2., 180)
    end_fill()
    left(90)
    up()
    forward(radius*0.35)
    right(90)
    down()
    color(color1, color2)
    begin_fill()
    circle(radius*0.15)
    end_fill()
    left(90)
    up()
    backward(radius*0.35)
    down()
    left(90)

def main():
    reset()
    yin(200, "black", "white")
    yin(200, "white", "black")
    ht()
    return "Done!"

if __name__ == '__main__':
    main()
    mainloop()

地球


# coding:utf-8

from turtle import Screen, Turtle, mainloop
from time import clock, sleep

def mn_eck(p, ne,sz):
    turtlelist = [p]
    #create ne-1 additional turtles
    for i in range(1,ne):
        q = p.clone()
        q.rt(360.0/ne)
        turtlelist.append(q)
        p = q
    for i in range(ne):
        c = abs(ne/2.0-i)/(ne*.7)
        # let those ne turtles make a step
        # in parallel:
        for t in turtlelist:
            t.rt(360./ne)
            t.pencolor(1-c,0,c)
            t.fd(sz)

def main():
    s = Screen()
    s.bgcolor("black")
    p=Turtle()
    p.speed(0)
    p.hideturtle()
    p.pencolor("red")
    p.pensize(3)

    s.tracer(36,0)

    at = clock()
    mn_eck(p, 36, 19)
    et = clock()
    z1 = et-at

    sleep(1)

    at = clock()
    while any([t.undobufferentries() for t in s.turtles()]):
        for t in s.turtles():
            t.undo()
    et = clock()
    return "runtime: %.3f sec" % (z1+et-at)


if __name__ == '__main__':
    msg = main()
    print(msg)
    mainloop()

两个画布


# coding:utf-8

from turtle import TurtleScreen, RawTurtle, TK

def main():
    root = TK.Tk()
    cv1 = TK.Canvas(root, width=300, height=200, bg="#ddffff")
    cv2 = TK.Canvas(root, width=300, height=200, bg="#ffeeee")
    cv1.pack()
    cv2.pack()

    s1 = TurtleScreen(cv1)
    s1.bgcolor(0.85, 0.85, 1)
    s2 = TurtleScreen(cv2)
    s2.bgcolor(1, 0.85, 0.85)

    p = RawTurtle(s1)
    q = RawTurtle(s2)

    p.color("red", (1, 0.85, 0.85))
    p.width(3)
    q.color("blue", (0.85, 0.85, 1))
    q.width(3)

    for t in p,q:
        t.shape("turtle")
        t.lt(36)

    q.lt(180)

    for t in p, q:
        t.begin_fill()
    for i in range(5):
        for t in p, q:
            t.fd(50)
            t.lt(72)
    for t in p,q:
        t.end_fill()
        t.lt(54)
        t.pu()
        t.bk(50)

    return "EVENTLOOP"


if __name__ == '__main__':
    main()
    TK.mainloop()  # keep window open until user closes it

一棵树


# coding:utf-8

from turtle import Turtle, mainloop
from time import clock

def tree(plist, l, a, f):
    """ plist is list of pens
    l is length of branch
    a is half of the angle between 2 branches
    f is factor by which branch is shortened
    from level to level."""
    if l > 3:
        lst = []
        for p in plist:
            p.forward(l)
            q = p.clone()
            p.left(a)
            q.right(a)
            lst.append(p)
            lst.append(q)
        for x in tree(lst, l*f, a, f):
            yield None

def maketree():
    p = Turtle()
    p.setundobuffer(None)
    p.hideturtle()
    p.speed(0)
    p.getscreen().tracer(30,0)
    p.left(90)
    p.penup()
    p.forward(-210)
    p.pendown()
    t = tree([p], 200, 65, 0.6375)
    for x in t:
        pass
    print(len(p.getscreen().turtles()))

def main():
    a=clock()
    maketree()
    b=clock()
    return "done: %.2f sec." % (b-a)

if __name__ == "__main__":
    msg = main()
    print(msg)
    mainloop()

排序


# coding:utf-8
from turtle import *
import random


class Block(Turtle):

    def __init__(self, size):
        self.size = size
        Turtle.__init__(self, shape="square", visible=False)
        self.pu()
        self.shapesize(size * 1.5, 1.5, 2) # square-->rectangle
        self.fillcolor("black")
        self.st()

    def glow(self):
        self.fillcolor("red")

    def unglow(self):
        self.fillcolor("black")

    def __repr__(self):
        return "Block size: {0}".format(self.size)


class Shelf(list):

    def __init__(self, y):
        "create a shelf. y is y-position of first block"
        self.y = y
        self.x = -150

    def push(self, d):
        width, _, _ = d.shapesize()
        # align blocks by the bottom edge
        y_offset = width / 2 * 20
        d.sety(self.y + y_offset)
        d.setx(self.x + 34 * len(self))
        self.append(d)

    def _close_gap_from_i(self, i):
        for b in self[i:]:
            xpos, _ = b.pos()
            b.setx(xpos - 34)

    def _open_gap_from_i(self, i):
        for b in self[i:]:
            xpos, _ = b.pos()
            b.setx(xpos + 34)

    def pop(self, key):
        b = list.pop(self, key)
        b.glow()
        b.sety(200)
        self._close_gap_from_i(key)
        return b

    def insert(self, key, b):
        self._open_gap_from_i(key)
        list.insert(self, key, b)
        b.setx(self.x + 34 * key)
        width, _, _ = b.shapesize()
        # align blocks by the bottom edge
        y_offset = width / 2 * 20
        b.sety(self.y + y_offset)
        b.unglow()

def isort(shelf):
    length = len(shelf)
    for i in range(1, length):
        hole = i
        while hole > 0 and shelf[i].size < shelf[hole - 1].size:
            hole = hole - 1
        shelf.insert(hole, shelf.pop(i))
    return

def ssort(shelf):
    length = len(shelf)
    for j in range(0, length - 1):
        imin = j
        for i in range(j + 1, length):
            if shelf[i].size < shelf[imin].size:
                imin = i
        if imin != j:
            shelf.insert(j, shelf.pop(imin))def partition(shelf, left, right, pivot_index):
    pivot = shelf[pivot_index]
    shelf.insert(right, shelf.pop(pivot_index))
    store_index = left
    for i in range(left, right):# range is non-inclusive of ending valueif shelf[i].size < pivot.size:
            shelf.insert(store_index, shelf.pop(i))
            store_index = store_index +1
    shelf.insert(store_index, shelf.pop(right))# move pivot to correct positionreturn store_index

def qsort(shelf, left, right):if left < right:
        pivot_index = left
        pivot_new_index = partition(shelf, left, right, pivot_index)
        qsort(shelf, left, pivot_new_index -1)
        qsort(shelf, pivot_new_index +1, right)def randomize():
    disable_keys()
    clear()
    target = list(range(10))
    random.shuffle(target)for i, t in enumerate(target):for j in range(i, len(s)):if s[j].size == t +1:
                s.insert(i, s.pop(j))
    show_text(instructions1)
    show_text(instructions2, line=1)
    enable_keys()def show_text(text, line=0):
    line =20* line
    goto(0,-250- line)
    write(text, align="center", font=("Courier",16,"bold"))def start_ssort():
    disable_keys()
    clear()
    show_text("Selection Sort")
    ssort(s)
    clear()
    show_text(instructions1)
    show_text(instructions2, line=1)
    enable_keys()def start_isort():
    disable_keys()
    clear()
    show_text("Insertion Sort")
    isort(s)
    clear()
    show_text(instructions1)
    show_text(instructions2, line=1)
    enable_keys()def start_qsort():
    disable_keys()
    clear()
    show_text("Quicksort")
    qsort(s,0, len(s)-1)
    clear()
    show_text(instructions1)
    show_text(instructions2, line=1)
    enable_keys()def init_shelf():global s
    s =Shelf(-200)
    vals =(4,2,8,9,1,5,10,3,7,6)for i in vals:
        s.push(Block(i))def disable_keys():
    onkey(None,"s")
    onkey(None,"i")
    onkey(None,"q")
    onkey(None,"r")def enable_keys():
    onkey(start_isort,"i")
    onkey(start_ssort,"s")
    onkey(start_qsort,"q")
    onkey(randomize,"r")
    onkey(bye,"space")def main():
    getscreen().clearscreen()
    ht(); penup()
    init_shelf()
    show_text(instructions1)
    show_text(instructions2, line=1)
    enable_keys()
    listen()return"EVENTLOOP"

instructions1 ="press i for insertion sort, s for selection sort, q for quicksort"
instructions2 ="spacebar to quit, r to randomize"if __name__=="__main__":
    msg = main()
    mainloop()

圆舞曲


1 # coding:utf-8
2  
3 from turtle import *
4  
5 def stop():
6     global running
7     running = False
8  
9 def main():
10     global running
11     clearscreen()
12     bgcolor("gray10")
13     tracer(False)
14     shape("triangle")
15     f =   0.793402
16     phi = 9.064678
17     s = 5
18     c = 1
19     # create compound shape
20     sh = Shape("compound")
21     for i in range(10):
22         shapesize(s)
23         p =get_shapepoly()
24         s *= f
25         c *= f
26         tilt(-phi)
27         sh.addcomponent(p, (c, 0.25, 1-c), "black")
28     register_shape("multitri", sh)
29     # create dancers
30     shapesize(1)
31     shape("multitri")
32     pu()
33     setpos(0, -200)
34     dancers = []
35     for i in range(180):
36         fd(7)
37         tilt(-4)
38         lt(2)
39         update()
40         if i % 12 == 0:
41             dancers.append(clone())
42     home()
43     # dance
44     running = True
45     onkeypress(stop)
46     listen()
47     cs = 1
48     while running:
49         ta = -4
50         for dancer in dancers:
51             dancer.fd(7)
52             dancer.lt(2)
53             dancer.tilt(ta)
54             ta = -4 if ta > 0 else 2
55         if cs < 180:
56             right(4)
57             shapesize(cs)
58             cs *= 1.005
59         update()
60     return "DONE!"
61  
62 if __name__=='__main__':
63     print(main())
64     mainloop()
65  

地球与行星


# coding:utf-8

from turtle import Shape, Turtle, mainloop, Vec2D as Vec

G = 8

class GravSys(object):
    def __init__(self):
        self.planets = []
        self.t = 0
        self.dt = 0.01
    def init(self):
        for p in self.planets:
            p.init()
    def start(self):
        for i in range(10000):
            self.t += self.dt
            for p in self.planets:
                p.step()

class Star(Turtle):
    def __init__(self, m, x, v, gravSys, shape):
        Turtle.__init__(self, shape=shape)
        self.penup()
        self.m = m
        self.setpos(x)
        self.v = v
        gravSys.planets.append(self)
        self.gravSys = gravSys
        self.resizemode("user")
        self.pendown()
    def init(self):
        dt = self.gravSys.dt
        self.a = self.acc()
        self.v = self.v + 0.5*dt*self.a
    def acc(self):
        a = Vec(0,0)
        for planet in self.gravSys.planets:
            if planet != self:
                v = planet.pos()-self.pos()
                a += (G*planet.m/abs(v)**3)*v
        return a
    def step(self):
        dt = self.gravSys.dt
        self.setpos(self.pos() + dt*self.v)
        if self.gravSys.planets.index(self) != 0:
            self.setheading(self.towards(self.gravSys.planets[0]))
        self.a = self.acc()
        self.v = self.v + dt*self.a

## create compound yellow/blue turtleshape for planets

def main():
    s = Turtle()
    s.reset()
    s.getscreen().tracer(0,0)
    s.ht()
    s.pu()
    s.fd(6)
    s.lt(90)
    s.begin_poly()
    s.circle(6, 180)
    s.end_poly()
    m1 = s.get_poly()
    s.begin_poly()
    s.circle(6,180)
    s.end_poly()
    m2 = s.get_poly()

    planetshape = Shape("compound")
    planetshape.addcomponent(m1,"orange")
    planetshape.addcomponent(m2,"blue")
    s.getscreen().register_shape("planet", planetshape)
    s.getscreen().tracer(1,0)

    ## setup gravitational system
    gs = GravSys()
    sun = Star(1000000, Vec(0,0),Vec(0,-2.5), gs,"circle")
    sun.color("yellow")
    sun.shapesize(1.8)
    sun.pu()
    earth =Star(12500,Vec(210,0),Vec(0,195), gs,"planet")
    earth.pencolor("green")
    earth.shapesize(0.8)
    moon =Star(1,Vec(220,0),Vec(0,295), gs,"planet")
    moon.pencolor("blue")
    moon.shapesize(0.5)
    gs.init()
    gs.start()return"Done!"if __name__ =='__main__':
    main()
    mainloop()

细胞分裂


 

1 # coding:utf-8
2  
3 from turtle import *
4 from math import cos, pi
5 from time import clock, sleep
6  
7 f = (5**0.5-1)/2.0   # (sqrt(5)-1)/2 -- golden ratio
8 d = 2 * cos(3*pi/10)
9  
10 def kite(l):
11     fl = f * l
12     lt(36)
13     fd(l)
14     rt(108)
15     fd(fl)
16     rt(36)
17     fd(fl)
18     rt(108)
19     fd(l)
20     rt(144)
21  
22 def dart(l):
23     fl = f * l
24     lt(36)
25     fd(l)
26     rt(144)
27     fd(fl)
28     lt(36)
29     fd(fl)
30     rt(144)
31     fd(l)
32     rt(144)
33  
34 def inflatekite(l, n):
35     if n == 0:
36         px, py = pos()
37         h, x, y = int(heading()), round(px,3), round(py,3)
38         tiledict[(h,x,y)] = True
39         return
40     fl = f * l
41     lt(36)
42     inflatedart(fl, n-1)
43     fd(l)
44     rt(144)
45     inflatekite(fl, n-1)
46     lt(18)
47     fd(l*d)
48     rt(162)
49     inflatekite(fl, n-1)
50     lt(36)
51     fd(l)
52     rt(180)
53     inflatedart(fl, n-1)
54     lt(36)
55  
56 def inflatedart(l, n):
57     if n == 0:
58         px, py = pos()
59         h, x, y = int(heading()), round(px,3), round(py,3)
60         tiledict[(h,x,y)] = False
61         return
62     fl = f * l
63     inflatekite(fl, n-1)
64     lt(36)
65     fd(l)
66     rt(180)
67     inflatedart(fl, n-1)
68     lt(54)
69     fd(l*d)
70     rt(126)
71     inflatedart(fl, n-1)
72     fd(l)
73     rt(144)
74  
75 def draw(l, n, th=2):
76     clear()
77     l = l * f**n
78     shapesize(l/100.0, l/100.0, th)
79     for k in tiledict:
80         h, x, y = k
81         setpos(x, y)
82         setheading(h)
83         if tiledict[k]:
84             shape("kite")
85             color("black", (0, 0.75, 0))
86         else:
87             shape("dart")
88             color("black", (0.75, 0, 0))
89         stamp()
90  
91 def sun(l, n):
92     for i in range(5):
93         inflatekite(l, n)
94         lt(72)
95  
96 def star(l,n):
97     for i in range(5):
98         inflatedart(l, n)
99         lt(72)
100  
101 def makeshapes():
102     tracer(0)
103     begin_poly()
104     kite(100)
105     end_poly()
106     register_shape("kite", get_poly())
107     begin_poly()
108     dart(100)
109     end_poly()
110     register_shape("dart", get_poly())
111     tracer(1)
112  
113 def start():
114     reset()
115     ht()
116     pu()
117     makeshapes()
118     resizemode("user")
119  
120 def test(l=200, n=4, fun=sun, startpos=(0,0), th=2):
121     global tiledict
122     goto(startpos)
123     setheading(0)
124     tiledict = {}
125     a = clock()
126     tracer(0)
127     fun(l, n)
128     b = clock()
129     draw(l, n, th)
130     tracer(1)
131     c = clock()
132     print("Calculation:   %7.4f s" % (b - a))
133     print("Drawing:  %7.4f s" % (c - b))
134     print("Together: %7.4f s" % (c - a))
135     nk = len([x for x in tiledict if tiledict[x]])
136     nd = len([x for x in tiledict if not tiledict[x]])
137     print("%d kites and %d darts = %d pieces." % (nk, nd, nk+nd))
138  
139 def demo(fun=sun):
140     start()
141     for i in range(8):
142         a = clock()
143         test(300, i, fun)
144         b = clock()
145         t = b - a
146         if t < 2:
147             sleep(2 - t)
148  
149 def main():
150     #title("Penrose-tiling with kites and darts.")
151     mode("logo")
152     bgcolor(0.3, 0.3, 0)
153     demo(sun)
154     sleep(2)
155     demo(star)
156     pencolor("black")
157     goto(0,-200)
158     pencolor(0.7,0.7,1)
159     write("Please wait...",
160           align="center", font=('Arial Black', 36, 'bold'))
161     test(600, 8, startpos=(70, 117))
162     return "Done"
163  
164 if __name__ == "__main__":
165     msg = main()
166     mainloop()
167  

和平


 

1 # coding:utf-8
2  
3 from turtle import *
4  
5 def main():
6     peacecolors = ("red3",  "orange", "yellow",
7                    "seagreen4", "orchid4",
8                    "royalblue1", "dodgerblue4")
9  
10     reset()
11     Screen()
12     up()
13     goto(-320,-195)
14     width(70)
15  
16     for pcolor in peacecolors:
17         color(pcolor)
18         down()
19         forward(640)
20         up()
21         backward(640)
22         left(90)
23         forward(66)
24         right(90)
25  
26     width(25)
27     color("white")
28     goto(0,-170)
29     down()
30  
31     circle(170)
32     left(90)
33     forward(340)
34     up()
35     left(180)
36     forward(170)
37     right(45)
38     down()
39     forward(170)
40     up()
41     backward(170)
42     left(90)
43     down()
44     forward(170)
45     up()
46  
47     goto(0,300) # vanish if hideturtle() is not available ;-)
48     return "Done!"
49  
50 if __name__ == "__main__":
51     main()
52     mainloop()
53  

鼠标追随


1 # coding:utf-8
2  
3 from turtle import *
4  
5 def switchupdown(x=0, y=0):
6     if pen()["pendown"]:
7         end_fill()
8         up()
9     else:
10         down()
11         begin_fill()
12  
13 def changecolor(x=0, y=0):
14     global colors
15     colors = colors[1:]+colors[:1]
16     color(colors[0])
17  
18 def main():
19     global colors
20     shape("circle")
21     resizemode("user")
22     shapesize(.5)
23     width(3)
24     colors=["red", "green", "blue", "yellow"]
25     color(colors[0])
26     switchupdown()
27     onscreenclick(goto,1)
28     onscreenclick(changecolor,2)
29     onscreenclick(switchupdown,3)
30     return "EVENTLOOP"
31  
32 if __name__ == "__main__":
33     msg = main()
34     print(msg)
35     mainloop()
36  

nim


1 # coding:utf-8
2  
3 import turtle
4 import random
5 import time
6  
7 SCREENWIDTH = 640
8 SCREENHEIGHT = 480
9  
10 MINSTICKS = 7
11 MAXSTICKS = 31
12  
13 HUNIT = SCREENHEIGHT // 12
14 WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)
15  
16 SCOLOR = (63, 63, 31)
17 HCOLOR = (255, 204, 204)
18 COLOR = (204, 204, 255)
19  
20 def randomrow():
21     return random.randint(MINSTICKS, MAXSTICKS)
22  
23 def computerzug(state):
24     xored = state[0] ^ state[1] ^ state[2]
25     if xored == 0:
26         return randommove(state)
27     for z in range(3):
28         s = state[z] ^ xored
29         if s <= state[z]:
30             move = (z, s)
31             return move
32  
33 def randommove(state):
34     m = max(state)
35     while True:
36         z = random.randint(0,2)
37         if state[z] > (m > 1):
38             break
39     rand = random.randint(m > 1, state[z]-1)
40     return z, rand
41  
42  
43 class NimModel(object):
44     def __init__(self, game):
45         self.game = game
46  
47     def setup(self):
48         if self.game.state not in [Nim.CREATED, Nim.OVER]:
49             return
50         self.sticks = [randomrow(), randomrow(), randomrow()]
51         self.player = 0
52         self.winner = None
53         self.game.view.setup()
54         self.game.state = Nim.RUNNING
55  
56     def move(self, row, col):
57         maxspalte = self.sticks[row]
58         self.sticks[row] = col
59         self.game.view.notify_move(row, col, maxspalte, self.player)
60         if self.game_over():
61             self.game.state = Nim.OVER
62             self.winner = self.player
63             self.game.view.notify_over()
64         elif self.player == 0:
65             self.player = 1
66             row, col = computerzug(self.sticks)
67             self.move(row, col)
68             self.player = 0
69  
70     def game_over(self):
71         return self.sticks == [0, 0, 0]
72  
73     def notify_move(self, row, col):
74         if self.sticks[row] <= col:
75             return
76         self.move(row, col)
77  
78  
79 class Stick(turtle.Turtle):
80     def __init__(self, row, col, game):
81         turtle.Turtle.__init__(self, visible=False)
82         self.row = row
83         self.col = col
84         self.game = game
85         x, y = self.coords(row, col)
86         self.shape("square")
87         self.shapesize(HUNIT/10.0, WUNIT/20.0)
88         self.speed(0)
89         self.pu()
90         self.goto(x,y)
91         self.color("white")
92         self.showturtle()
93  
94     def coords(self, row, col):
95         packet, remainder = divmod(col, 5)
96         x = (3 + 11 * packet + 2 * remainder) * WUNIT
97         y = (2 + 3 * row) * HUNIT
98         return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2
99  
100     def makemove(self, x, y):
101         if self.game.state != Nim.RUNNING:
102             return
103         self.game.controller.notify_move(self.row, self.col)
104  
105  
106 class NimView(object):
107     def __init__(self, game):
108         self.game = game
109         self.screen = game.screen
110         self.model = game.model
111         self.screen.colormode(255)
112         self.screen.tracer(False)
113         self.screen.bgcolor((240, 240, 255))
114         self.writer = turtle.Turtle(visible=False)
115         self.writer.pu()
116         self.writer.speed(0)
117         self.sticks = {}
118         for row in range(3):
119             for col in range(MAXSTICKS):
120                 self.sticks[(row, col)] = Stick(row, col, game)
121         self.display("... a moment please ...")
122         self.screen.tracer(True)
123  
124     def display(self, msg1, msg2=None):
125         self.screen.tracer(False)
126         self.writer.clear()
127         if msg2 is not None:
128             self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
129             self.writer.pencolor("red")
130             self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
131         self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
132         self.writer.pencolor("black")
133         self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
134         self.screen.tracer(True)
135  
136     def setup(self):
137         self.screen.tracer(False)
138         for row in range(3):
139             for col in range(self.model.sticks[row]):
140                 self.sticks[(row, col)].color(SCOLOR)
141         for row in range(3):
142             for col in range(self.model.sticks[row], MAXSTICKS):
143                 self.sticks[(row, col)].color("white")
144         self.display("Your turn! Click leftmost stick to remove.")
145         self.screen.tracer(True)
146  
147     def notify_move(self, row, col, maxspalte, player):
148         if player == 0:
149             farbe = HCOLOR
150             for s in range(col, maxspalte):
151                 self.sticks[(row, s)].color(farbe)
152         else:
153             self.display(" ... thinking ...         ")
154             time.sleep(0.5)
155             self.display(" ... thinking ... aaah ...")
156             farbe = COLOR
157             for s in range(maxspalte-1, col-1, -1):
158                 time.sleep(0.2)
159                 self.sticks[(row, s)].color(farbe)
160             self.display("Your turn! Click leftmost stick to remove.")
161  
162     def notify_over(self):
163         if self.game.model.winner == 0:
164             msg2 = "Congrats. You're the winner!!!"
165         else:
166             msg2 = "Sorry, the computer is the winner."
167         self.display("To play again press space bar. To leave press ESC.", msg2)
168  
169     def clear(self):
170         if self.game.state == Nim.OVER:
171             self.screen.clear()
172  
173  
174 class NimController(object):
175  
176     def __init__(self, game):
177         self.game = game
178         self.sticks = game.view.sticks
179         self.BUSY = False
180         for stick in self.sticks.values():
181             stick.onclick(stick.makemove)
182         self.game.screen.onkey(self.game.model.setup, "space")
183         self.game.screen.onkey(self.game.view.clear, "Escape")
184         self.game.view.display("Press space bar to start game")
185         self.game.screen.listen()
186  
187     def notify_move(self, row, col):
188         if self.BUSY:
189             return
190         self.BUSY = True
191         self.game.model.notify_move(row, col)
192         self.BUSY = False
193  
194  
195 class Nim(object):
196     CREATED = 0
197     RUNNING = 1
198     OVER = 2
199     def __init__(self, screen):
200         self.state = Nim.CREATED
201         self.screen = screen
202         self.model = NimModel(self)
203         self.view = NimView(self)
204         self.controller = NimController(self)
205  
206  
207 def main():
208     mainscreen = turtle.Screen()
209     mainscreen.mode("standard")
210     mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
211     nim = Nim(mainscreen)
212     return "EVENTLOOP"
213  
214 if __name__ == "__main__":
215     main()
216     turtle.mainloop()
217  


 

 


posted @ 2018-11-22 13:58  sin涛涛  阅读(1448)  评论(0编辑  收藏  举报