大三寒假学习进度笔记(三十)

写在前面

今天主要实现了用神经网络实现鸢尾花分类

主要实现代码:

# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线

import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

# 导入数据,分别为输入数据和特征
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target
# 数据集乱序,提高准确率
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
# 将打乱后的数据分割为训练集和测试集 训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
# 定义神经网络中所有可训练参数
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

# 学习率为0.1
lr = 0.1
# 将每轮的loss记录在此列表,方便画loss曲线
train_loss_results = []
# 将每轮的acc记录在此列表,方便画acc曲线
test_acc = []
# 循环500轮
epoch = 500
# 每轮4个step,loss_all记录四个step生成的4个loss的和
loss_all = 0

# 训练
for epoch in range(epoch):
    # batch级别的循环 ,每个step循环一个batch
    for step, (x_train, y_train) in enumerate(train_db):
        # with结构记录梯度信息
        with tf.GradientTape() as tape:
            # 神经网络乘加运算
            y = tf.matmul(x_train, w1) + b1
            # 使输出y符合概率分布
            y = tf.nn.softmax(y)
            # 将标签值转换成独热码格式,方便计算loss和accuracy
            y_ = tf.one_hot(y_train, depth=3)
            # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss = tf.reduce_mean(tf.square(y_ - y))
            # 将每个step计算出的loss累加,为后续求loss平均值提供数据
            loss_all += loss.numpy()
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # w1
        b1.assign_sub(lr * grads[1])  # b

    # 每个epoch打印loss信息
    print("Epoch {},loss: {}".format(epoch, loss_all / 4))
    # 将4个step的loss求平均值记录在此变量
    train_loss_results.append(loss_all / 4)
    loss_all = 0

    # 测试部分
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        # 返回y中最大值的索引,即预测的分类
        pred = tf.argmax(y, axis=1)
        # 将pred转换成y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 分类正确,则correct=1,否则为0
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 加起来每个correct数
        correct = tf.reduce_sum(correct)
        total_correct += int(correct)
        # total_number为总样本数,也就是x_test的行数
        total_number += x_test.shape[0]

    # 总的准确率= total_correct / total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("------------------------")

# 绘制loss曲线
plt.title("Loss Function Curve")
plt.xlabel('Epoch')
plt.ylabel('Loss')
# 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.plot(train_loss_results, label="$Loss$")
plt.legend()
plt.show()
# 绘制Accuracy曲线
plt.title("Acc Curve")
plt.xlabel('Epoch')
plt.ylabel('Acc')
# 逐点画出trian_loss_results值并连线,连线图标是Accuracy
plt.plot(test_acc, label="$Accuracy$")
plt.legend()
plt.show()

代码十分详细,这里就不再赘述了

总结

明天就是除夕了,该歇会了!

posted @ 2021-02-10 21:48  武神酱丶  阅读(127)  评论(0编辑  收藏  举报