最长上生子序列LIS

  

学习动态规划问题(DP问题)中,其中有一个知识点叫最长上升子序列(longest  increasing subsequence),也可以叫最长非降序子序列,简称LIS。简单说一下自己的心得。

  我们都知道,动态规划的一个特点就是当前解可以由上一个阶段的解推出, 由此,把我们要求的问题简化成一个更小的子问题。子问题具有相同的求解方式,只不过是规模小了而已。最长上升子序列就符合这一特性。我们要求n个数的最长上升子序列,可以求前n-1个数的最长上升子序列,再跟第n个数进行判断。求前n-1个数的最长上升子序列,可以通过求前n-2个数的最长上升子序列……直到求前1个数的最长上升子序列,此时LIS当然为1。

  让我们举个例子:求 2 7 1 5 6 4 3 8 9 的最长上升子序列。我们定义d(i) (i∈[1,n])来表示前i个数以A[i]结尾的最长上升子序列长度。

  前1个数 d(1)=1 子序列为2;

  前2个数 7前面有2小于7 d(2)=d(1)+1=2 子序列为2 7

  前3个数 在1前面没有比1更小的,1自身组成长度为1的子序列 d(3)=1 子序列为1

  前4个数 5前面有2小于5 d(4)=d(1)+1=2 子序列为2 5

  前5个数 6前面有2 5小于6 d(5)=d(4)+1=3 子序列为2 5 6

  前6个数 4前面有2小于4 d(6)=d(1)+1=2 子序列为2 4

  前7个数 3前面有2小于3 d(3)=d(1)+1=2 子序列为2 3

  前8个数 8前面有2 5 6小于8 d(8)=d(5)+1=4 子序列为2 5 6 8

  前9个数 9前面有2 5 6 8小于9 d(9)=d(8)+1=5 子序列为2 5 6 8 9

  d(i)=max{d(1),d(2),……,d(i)} 我们可以看出这9个数的LIS为d(9)=5

  总结一下,d(i)就是找以A[i]结尾的,在A[i]之前的最长上升子序列+1,当A[i]之前没有比A[i]更小的数时,d(i)=1。所有的d(i)里面最大的那个就是最长上升子序列。话不多说,show me the code!下面是代码实现的算法。

 状态转移方程:朴素dp,记f(i)为记a[i]结尾的最长上升子序列

        f(i)=max(f(j)+1)    1=<j<i   ,初始化dp数组全为1,从1开始循环k,一旦小于a[i]状态转移,否则保留初始化的1——即之后所有值都比他小。O(n)=n^2

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <algorithm>
 4 #include <cstdlib>
 5 #include <cstring>
 6 #include <cmath>
 7 using namespace std;
 8 const int maxn = 103,INF=0x7f7f7f7f;
 9 int a[maxn],f[maxn];
10 int n,ans=-INF;
11 int main()
12 {
13     scanf("%d",&n);
14     for(int i=1;i<=n;i++) 
15     {
16         scanf("%d",&a[i]);
17         f[i]=1;
18     }
19     for(int i=1;i<=n;i++)
20         for(int j=1;j<i;j++)
21             if(a[j]<a[i]) f[i]=max(f[i],f[j]+1);
22     for(int i=1;i<=n;i++) 
23         ans=max(ans,f[i]);
24     printf("%d\n",ans);
25     return 0;
26 }

 

posted @ 2018-10-28 21:35  Rohlf  阅读(320)  评论(0编辑  收藏  举报