简谈” Top K“
Top K
快速选择和堆排序都可以求解 Kth Element 和 TopK Elements 问题。
题见215. Kth Largest Element in an Array (Medium)
partition划分法
public int findKthLargest(int[] nums, int k) {
int j = -1;
int left = 0,right = nums.length - 1;
int target = right - k + 1;
while (j != target){
j = partition(nums,left,right);
if(j == target)
return nums[j];
else if(j < target){
left = j + 1;
}
else {
right = j - 1;
}
}
return nums[j];
}
//leetcode中看到的划分方法,简单易懂
public int partition(int[] nums,int start,int end){
int pivot = nums[start];
int j = start;
for(int i = start + 1;i <= end;i++){
if(nums[i] < pivot){
j++;
swap(nums,i,j);
}
}
swap(nums,j,start);
return j;
}
//经典快排划分方法,见《算法》和cyc2018
public int partition_custom(int[] nums,int start,int end){
int left = start,right = end + 1;
int pivot = nums[start];
while (true){
while (left < end && nums[++left] <= pivot);
while (right > start && nums[--right] >= pivot);//right永远不会超出范围
if(left >= right)
break;
swap(nums,left,right);
}
swap(nums,right,start);
return right;
}
private void swap(int[] nums, int index1, int index2){
int temp = nums[index1];
nums[index1] = nums[index2];
nums[index2] = temp;
}
堆排序
public int findKthLargest_heap(int[] nums, int k) {
PriorityQueue<Integer> heap = new PriorityQueue<>();
for(int i = 0;i < nums.length;i++){
heap.offer(nums[i]);
}
for (int i = 0;i < nums.length - k;i++){
heap.poll();
}
return heap.peek();
}