【PyTorch】L2 正则化
论文 Bag of Tricks for Image Classification with Convolutional Neural Networks. 中提到,加 L2 正则就相当于将该权重趋向 0,而对于 CNN 而言,一般只对卷积层和全连接层的 weights 进行 L2(weight decay),而不对 biases 进行。Batch Normalization 层也不进行 L2。
PyTorch,只对卷积层和全连接层的 weights 进行 L2(weight decay):
复制weight_decay_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias' and "bn" not in name)
no_decay_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias' or "bn" in name)
parameters = [{'params': weight_decay_list},
{'params': no_decay_list, 'weight_decay': 0.}]
optimizer = torch.optim.SGD(parameters, lr=0.1, momentum=0.9, weight_decay=5e-4, nesterov=True)
References
[1] He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M. (2019). Bag of Tricks for Image Classification with Convolutional Neural Networks. (CVPR) https://dx.doi.org/10.1109/cvpr.2019.00065
作者:wuliytTaotao
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。
分类:
PyTorch
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 【杂谈】分布式事务——高大上的无用知识?