【PyTorch】L2 正则化
论文 Bag of Tricks for Image Classification with Convolutional Neural Networks. 中提到,加 L2 正则就相当于将该权重趋向 0,而对于 CNN 而言,一般只对卷积层和全连接层的 weights 进行 L2(weight decay),而不对 biases 进行。Batch Normalization 层也不进行 L2。
PyTorch,只对卷积层和全连接层的 weights 进行 L2(weight decay):
weight_decay_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias' and "bn" not in name)
no_decay_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias' or "bn" in name)
parameters = [{'params': weight_decay_list},
{'params': no_decay_list, 'weight_decay': 0.}]
optimizer = torch.optim.SGD(parameters, lr=0.1, momentum=0.9, weight_decay=5e-4, nesterov=True)
References
[1] He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M. (2019). Bag of Tricks for Image Classification with Convolutional Neural Networks. (CVPR) https://dx.doi.org/10.1109/cvpr.2019.00065
作者:wuliytTaotao
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。