【tf.keras】TensorFlow 1.x 到 2.0 的 API 变化
TensorFlow 2.0 版本将 keras 作为高级 API,对于 keras boy/girl 来说,这就很友好了。tf.keras 从 1.x 版本迁移到 2.0 版本,需要注意几个地方。
1. 设置随机种子
import tensorflow as tf
# TF 1.x
tf.set_random_seed(args.seed)
# TF 2.0
tf.random.set_seed(args.seed)
2. 设置并行线程数和动态分配显存
import tensorflow as tf
from tensorflow.python.keras import backend as K
import os
# 将程序限定在一块GPU上
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
# TF 1.x
config = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True # 不全部占满显存, 按需分配
K.set_session(tf.Session(config=config))
# TF 2.0,由于之前限定了GPU可见范围,这里只能看到0号GPU
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
print(gpus)
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, enable=True)
3. model.compile() 中设置 metrics=['acc'] 或者 ['accuracy'],会影响 model.fit() 生成的 log,callbacks.ModelCheckpoint 需要对应填 val_acc 或者 val_accuracy:
from tensorflow.python.keras import callbacks
# TF 2.0, acc and val_acc
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['acc'])
ck_callback = callbacks.ModelCheckpoint('./model.h5', monitor='val_acc', mode='max',
verbose=1, save_best_only=True, save_weights_only=True)
# TF 2.0, accuracy and val_accuracy
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
ck_callback = callbacks.ModelCheckpoint('./model.h5', monitor='val_accuracy', mode='max',
verbose=1, save_best_only=True, save_weights_only=True)
4. 舍弃 model.fit_generator() 函数
model.fit_generator() 函数在 TF 2.x 中合并到 model.fit() 函数中,并且在 TF 2.0 版本,该函数有问题,不能很好利用 GPU,训练速度很慢:
Performance: Training is much slower in TF v2.0.0 VS v1.14.0 when using Tf.Keras
and model.fit_generator
#33024
TF 2.0 版本的 model.fit() 在传入 generator 时需要手动设置 model.fit(shuffle=False)。
解决办法:直接使用 model.fit() 函数,并且升级到 TF 2.1。
作者:wuliytTaotao
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。