【机器学习实战】验证集效果比测试集好怎么办?

模型在验证集(开发集)上的效果比在测试集上好,或者说,测试集上的效果不如验证集,这个时候该怎么办?

这可以理解为模型对验证集过拟合了。模型在验证集上的效果并不能代表模型的实际泛化能力。

这个时候,可以做的:
1)检查验证集和测试集是不是同一分布,验证集应该更像测试集而不是训练集。
2)换个验证集,或者增大验证集。
3)检查代码是不是有问题,验证集是不是被拿去训练参数了。

如下情况,可能是正常的:
1)测试集比验证集更难进行预测,尽管算法做得足够好了,却很难有进一步的提升空间。
2)当验证集和测试集差的不多时,如 1% 左右,可能是正常的。

References

《Machine Learning Yearning》机器学习训练秘籍 -- Andrew Ng
Validation and Testing accuracy widely different -- stackoverflow
test accuracy is so much lower than validation accuracy by 6~10%. What could be the reason? -- StackExchange

posted @   wuliytTaotao  阅读(8334)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
历史上的今天:
2018-10-18 将本地文件传输到GitHub
点击右上角即可分享
微信分享提示