洛谷 P1613 跑路 (倍增 + DP + 最短路)
题目链接:P1613 跑路
题意
给定包含 \(n\) 个点和 \(m\) 条边的有向图,每条边的长度为 \(1\) 千米。每秒钟可以跑 \(2^k\) 千米,问从点 \(1\) 到点 \(n\) 最少需几秒。
思路
倍增 DP Floyd
令 \(dp[i][j][k]\) 表示从 \(i\) 到 \(j\) 是否存在长度为 \(2^k\) 的路径。
那么如果 \(dp[i][t][k - 1]\) 和 \(dp[t][j][k - 1]\) 都为 \(1\) 则 \(dp[i][j][k]\) 为 \(1\)。此时可以用边权为 \(1\) 的边将点 \(i\) 和点 \(j\) 连起来。
最后跑一遍最短路即可。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e2 + 10;
ll dp[maxn][maxn][maxn];
ll dis[maxn][maxn];
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
memset(dis, 0x3f, sizeof(dis));
int n, m;
cin >> n >> m;
for(int i = 0; i < m; ++i) {
int x, y;
cin >> x >> y;
dp[x][y][0] = 1;
dis[x][y] = 1;
}
for(int x = 1; x <= 64; ++x) {
for(int k = 1; k <= n; ++k) {
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= n; ++j) {
if(dp[i][k][x - 1] && dp[k][j][x - 1]) {
dp[i][j][x] = 1;
dis[i][j] = 1;
}
}
}
}
}
for(int k = 1; k <= n; ++k) {
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= n; ++j) {
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}
cout << dis[1][n] << endl;
return 0;
}