hadoop-ha-hbase-storm-kafka集群部署

hadoop集群安装

系统整体规划

序号

Ip

Host

程序

1

10.64.39.140

NN

Hadoophbase

2

10.64.39.142

SNN

Hadoophbase

3

10.64.39.143

DN1

Hadoophbasezookeeperstormkafka

4

10.64.39.144

DN2

Hadoophbase zookeeperstormkafka

5

10.64.39.145

DN3

Hadoophbasezookeeperstormkafka

 

1.3 系统初始化环境配置

1、所有服务器时间配置同步

 

# echo 'CST-8'>> /etc/localtime

#echo '10.64.39.3'>>/etc/ntp.conf

2、启动服务

service ntpd start

3、设置自动启动

 Chkconfig ntpd on

 

1.4 Hadoop 2.2 集群划分

 

 

 

 

1.5 HDFS HA部署架构图

 

 

 

 

1.6 主机清单

本手册假设Hadoop集群由5台主机组成,主机配置如下:

序号

节点类型

主机名

IP地址

操作系统环境及硬件配置

1

主节点

NN

10.64.39.140

OS:REDHAT 6.4 64位

CPU:8CPU

内存:60G

划分数据存储容量:100G+2T

2

数据节点1

DN1

10.64.39.143

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

3

备用节点

SNN

10.64.39.142

OS:REDHAT 6.4 64位

CPU:8CPU

内存:60G

划分数据存储容量:100G+2T

4

数据节点2

DN2

10.64.39.144

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

5

数据节点3

DN3

10.64.39.145

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

 

1.7 修改主机名

5台主机分别执行以下操作修改主机名,对应主机名见2.4节的表格。

(1) root身份执行,修改文件/etc/sysconfig/network:

指令:

# vi /etc/sysconfig/network

修改以下内容:

NETWORKING=yes

HOSTNAME=【主机名】

(2) 重新启动主机使配置生效。

 

【注意】:Redhat7.0修改主机名方式有所不同,指令如下:

查看主机名相关的设置:hostnamectl status

永久修改主机名:sudo hostnamectl --static set-hostname <new-host-name>

 

1.8 更改IP地址

检查网络IP配置:ifconfig

修改IP地址:vi /etc/sysconfig/network-scripts/ifcfg-eno16777736

当前是DHCP,如果要使用静态IP,修改:

BOOTPROTO=static

ONBOOT=yes  #开启自动启用网络连接

增加:

IPADDR0=192.168.1.101  #设置IP地址

PREFIXO0=255.255.255.0  #设置子网掩码

GATEWAY0=192.168.1.1  #设置网关

完成后,重新启动网络服务:service network restart

 

1.9 配置hosts列表

修改文件/etc/hosts,配置每个主机的IP地址,指令如下:

# vi /etc/hosts

增加或修改以下内容:

 

 

 

1.10 关闭防火墙

5台服务器上的防火墙均需关闭。相关指令如下:

查看防火墙状态:

# service itables status

关闭防火墙:

# service iptables stop

永久关闭防火墙:

# chkconfig iptables off

 

【注意】:Redhat7.0防火墙关闭方式有所不同,指令如下:

查看防火墙状态:systemctl status firewalld

查看防火墙是否处于活动状态:systemctl is-active firewalld

关闭防火墙:systemctl stop firewalld

永久关闭防火墙:systemctl disable firewalld

打开防火墙命令:systemctl enable firewalld

启动防火墙:systemctl start firewalld

 

1.11 创建用户账号和相关目录

5台服务器上均需创建以下目录,并设置目录的权属:

/opt

/modules     -- 安装软件目录

/data        -- 存放数据目录

1.11.1 创建 hadoop 用户及组

groupadd hadoop

useradd hadoop -g hadoop

passwd hadoop

1.11.2 创建相关目录并设置目录权限

mkdir -p /opt/modules/

mkdir -p /opt/data/

mkdir -p /opt/data1/

chown -R hadoop:hadoop /opt/modules/

chown -R hadoop:hadoop /opt/rkdata/

chown -R hadoop:hadoop /opt/rkdata1/

chmod -R 775 /opt/modules/

 

1.12 配置SSH免密码登陆

本操作是指从主节点(nameNode)和备用节点(standbyNameNode)可以免密码登录本机及其他所有节点,并不能从数据节点免密码登录主节点或备用节点。

1.12.1 配置主节点(nameNode)无密码登陆

(1) 检查hadoop用户主目录(/home/hadoop/)下是否有.ssh目录(该目录为隐藏文件夹可通过【ls –a】指令查看),如果有则直接进入第(2)步,否则执行以下执行:

$ ssh localhost

提示是否继续时输入“no”退出,此时即可自动生成该目录。

然后通过以下指令检查:

$ cd /home/hadoop/

$ ls -al

(2) 生成私钥和公钥,执行以下指令:

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

(3) 把公钥(id_dsa.pub)追加到授权的key中去,执行以下指令:

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

(4) 更改授权key的权限,执行以下指令:

$ chmod go-rwx ~/.ssh/authorized_keys

1.12.2 将主节点(nameNode)授权key分发到备用节点

将主节点(nameNode)上的authorized_keys文件复制到备用节点(standbyNameNode)上,指令如下:

$ scp ~/.ssh/authorized_keys hadoop@standbyNameNode:/home/hadoop/.ssh/

复制过程中需要输入备用节点(standbyNameNode)上hadoop用户的密码。

复制成功后,在备用节点(standbyNameNode)的/home/hadoop/.ssh/目录中即会存在authorized_keys文件,请确认该文件已经正确复制。

1.12.3 配置备用节点(standbyNameNode)无密码登陆

(1) 2.5.1节第(1)部分同样操作。

(2) 生成私钥和公钥,执行以下指令:

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

(3) 把公钥(id_dsa.pub)追加到授权的key中去,执行以下指令:

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

(4) 查看授权key文件内容,确认主节点和备用节点的授权信息均在文件中,执行指令:

$ more ~/.ssh/authorized_keys

(5) 更改授权key的权限,执行以下指令:

$ chmod go-rwx ~/.ssh/authorized_keys

1.12.4 将备用节点(standbyNameNode)授权key发回到主节点

(1) 将备用节点(standbyNameNode)上带有两个节点授权信息的authorized_keys文件复制回主节点(nameNode)上,指令如下:

$ scp ~/.ssh/authorized_keys hadoop@nameNode:/home/hadoop/.ssh/

复制过程中需要输入主节点(nameNode)上hadoop用户的密码。

(2) 复制成功后,查看主节点(nameNode)的/home/hadoop/.ssh/目录中的authorized_keys文件内容,确认主节点和备用节点的授权信息均在文件中,指令如下:

$ more ~/.ssh/authorized_keys

1.12.5 从主节点(nameNode)将授权key分发到各数据节点

将主节点(nameNode)上带有两个节点授权信息的authorized_keys文件复制到3个数据节点上,指令如下:

$ scp ~/.ssh/authorized_keys hadoop@dataNode1:/home/hadoop/.ssh/

$ scp ~/.ssh/authorized_keys hadoop@dataNode2:/home/hadoop/.ssh/

$ scp ~/.ssh/authorized_keys hadoop@dataNode3:/home/hadoop/.ssh/

复制过程中需要输入各数据节点上hadoop用户的密码。

复制成功后,在3个数据节点(dataNode1、dataNode2、dataNode3)的/home/hadoop/.ssh/目录中即会存在authorized_keys文件,请确认该文件已经正确复制。

1.12.6 检查主节点(nameNodeSSH免密钥登录是否正常

在主节点(nameNode)上以hadoop用户分别连接本机、备用节点和3个数据节点。

注意,第1次连接每个节点(包括本机)时均会出现是否连接的提示,请输入“yes”,但不需要输入密码,此后的每次连接均不会有提示、也不需要密码,可以自动连接。

连接成功后,请输入“exit”退出SSH连接。

(1) 连接本机(使用localhost):

$ ssh localhost

(2) 连接本机(使用主机名nameNode):

$ ssh nameNode

(3) 连接备用节点(standbyNameNode):

$ ssh standbyNameNode

(4) 连接数据节点1(dataNode1):

$ ssh dataNode1

(5) 连接数据节点2(dataNode2):

$ ssh dataNode2

(6) 连接数据节点3(dataNode3):

$ ssh dataNode3

1.12.7检查备用节点(standbyNameNodeSSH免密钥登录是否正常

在备用节点(standbyNameNode)上以hadoop用户分别连接本机、主节点和3个数据节点。

注意,第1次连接每个节点(包括本机)时均会出现是否连接的提示,请输入“yes”,但不需要输入密码,此后的每次连接均不会有提示、也不需要密码,可以自动连接。

连接成功后,请输入“exit”退出SSH连接。

(1) 连接本机(使用localhost):

$ ssh localhost

(2) 连接本机(使用主机名standbyNameNode):

$ ssh standbyNameNode

(3) 连接主节点(nameNode):

$ ssh nameNode

(4) 连接数据节点1(dataNode1):

$ ssh dataNode1

(5) 连接数据节点2(dataNode2):

$ ssh dataNode2

(6) 连接数据节点3(dataNode3):

$ ssh dataNode3

 

1.13 复制JDKHadoop安装文件

5台服务器上均需复制JDK安装文件,Hadoop安装文件只需要复制到主节点(nameNode)上即可。

配套Hadoop 2.7在Linux中安装的jdk版本为1.8.0_101版本,文件名为jdk-8u45-linux-x64.bin。

Hadoop官网下载hadoop-2.7.3.tar.gz),

解压文件到系统/opt/modules/目录中。

指令如下(以hadoop用户执行):

$ jar -zxvf hadoop-2.7.3.tar.gz

 

JDK安装及配置(所有电脑配置)

2.1 安装JDK

本操作以hadoop用户执行。

(1) 运行JDK安装包(先赋予执行权限)

$ cd /opt/modules

$ chmod u+x jdk-8u45-linux-x64.bin

$ ./jdk-8u45-linux-x64.bin

此时系统会自动解压该文件完成安装。

2.2 配置环境变量

(1) root用户修改文件/etc/profile,指令如下:

$ su root

# vi /etc/profile

找到“export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL”,在该语句的上面添加以下语句(注意全部是英文字符,不要随意加空格):

export JAVA_HOME=/opt/modules/jdk1.8.0_101

export CLASSPATH=".:/opt/modules/jdk1.8.0_101/lib:/opt/modules/jdk1.8.0_101/jre/lib"

pathmunge /opt/modules/jdk1.8.0_101/bin:/opt/modules/jdk1.8.0_101/jre/bin

(2) 修改完成后保存退出,然后执行以下指令使配置生效(root用户执行):

# source /etc/profile

(3) 执行以下指令查看安装是否成功(查看版本信息):

# java -version

如安装成功,则显示以下内容:

java version "1.8.0_101"

Java(TM) SE Runtime Environment (build 1.8.0_101-b06)

Java HotSpot(TM) 64-Bit Server VM (build 20.45-b01, mixed mode)

 

 

Hadoop集群安装及配置

以下操作,如无特殊说明,均以hadoop用户执行。

3.1 解压缩安装包(主节点)

解压缩Hadoop安装包(先赋予执行权限):

$ cd /opt/modules

$ chmod -R 755 hadoop-2.7.3.tar.gz

$ tar -zxvf hadoop-2.7.3.tar.gz

3.2 配置环境变量(主节点)

本环境变量配置的文件与JDK安装后配置的文件相同,操作如下:

(1) root用户修改文件/etc/profile,指令如下:

$ su root

# vi /etc/profile

找到配置JDK环境变量时增加的配置信息,在“pathmunge /opt/modules/ jdk1.8.0_101/bin:/opt/modules/jdk1.8.0_101/jre/bin”语句的上面添加一行语句(注意全部是英文字符,不要随意加空格):

export HADOOP_HOME=/opt/modules/hadoop-2.7.3/

加完后(包括JDK的配置)的内容如下:

export JAVA_HOME=/opt/modules/ jdk1.8.0_101

export CLASSPATH=".:/opt/modules/ jdk1.8.0_101/lib:/opt/modules/ jdk1.8.0_101/jre/lib"

export HADOOP_HOME=/opt/modules/hadoop-2.7.3/

pathmunge /opt/modules/ jdk1.8.0_101/bin:/opt/modules/ jdk1.8.0_101/jre/bin

(2) 修改完成后保存退出,然后执行以下指令使配置生效(root用户执行):

# source /etc/profile

# exit

 

3.3 修改Hadoop配置文件(主节点)

修改Hadoop配置文件的操作均以hadoop用户操作,所有配置文件都在目录【/opt/modules/hadoop-2.7.3/etc/hadoop/】中。

修改/opt/modules/hadoop-2.7.3/etc/hadoop/hadoop-env.sh:

$ vi /opt/modules/hadoop-2.7.3/etc/hadoop/hadoop-env.sh

找到“export JAVA_HOME=${JAVA_HOME}”所在行,修改为:

export JAVA_HOME=/opt/modules/jdk1.8.0_101

 

3.3.1 mapred-env.sh

修改/opt/modules/hadoop-2.7.3/etc/mapred-env.sh:

$ vi /opt/modules/hadoop-2.7.3/etc/hadoop/mapred-env.sh

找到“# export JAVA_HOME=/home/y/libexec/jdk1.6.0/”所在行,修改为:

export JAVA_HOME=/opt/modules/jdk1.8.0_101

3.3.2 slaves

修改/opt/modules/hadoop-2.7.3/etc/slaves:

$ vi /opt/modules/hadoop-2.7.3/etc/hadoop/slaves

找到“localhost”所在行,修改为:

DN1

DN2

DN3

3.3.3 yarn-env.sh

修改/opt/modules/hadoop-2.7.3/etc/yarn-env.sh:

$ vi /opt/modules/hadoop-2.7.3/etc/hadoop/yarn-env.sh

找到“# export JAVA_HOME=/home/y/libexec/jdk1.6.0/”所在行,修改为:

export JAVA_HOME=/opt/modules/jdk1.8.0_101

3.3.4 core-site.xml

修改/opt/modules/hadoop-2.7.3/etc/core-site.xml:

$ vi /opt/modules/hadoop-2.7.3/etc/hadoop/core-site.xml

找到以下内容:

<configuration>

</configuration>

在两行中间插入配置信息后内容如下:

<configuration>

<property>

    <name>fs.defaultFS</name>

    <value>hdfs://hadoop-new</value>

</property>

<property>

    <name>hadoop.tmp.dir</name>

    <value>/opt/rkdata/hadoop/tmp</value>

</property>

<property>

    <name>ipc.maximum.data.length</name>

    <value>134217728</value>

</property>

<property>

    <name>io.file.buffer.size</name>

        <value>131072</value>

</property>

 

<property>

    <name>fs.trash.interval</name>

        <value>1440</value>

</property>

 

<property>

    <name>ha.zookeeper.quorum</name>

        <value>10.64.39.143:2181,10.64.39.144:2181,10.64.39.145:2181</value>

</property>

 

<property>

    <name>ha.zookeeper.session-timeout.ms</name>

        <value>5000</value>

</property>

 

</configuration>

3.3.5 hdfs-site.xml

修改/opt/modules/hadoop-2.7.3/etc/hdfs-site.xml:

$ vi /opt/modules/hadoop-2.7.3/etc/hadoop/hdfs-site.xml

找到以下内容:

<configuration>

</configuration>

在两行中间插入配置信息后内容如下:

 <configuration>

<property>

    <name>dfs.nameservices</name>

    <value>hadoop-new</value>

</property>

<property>

    <name>dfs.replication</name>

    <value>3</value>

</property>

<property>

    <name>dfs.permissions</name>

    <value>false</value>

</property>

<property>

    <name>dfs.ha.namenodes.hadoop-new</name>

    <value>nn1,nn2</value>

</property>

<property>

    <name>dfs.namenode.rpc-address.hadoop-new.nn1</name>

    <value>NN:8020</value>

</property>

<property>

    <name>dfs.namenode.rpc-address.hadoop-new.nn2</name>

    <value>SNN:8020</value>

</property>

<property>

    <name>dfs.namenode.http-address.hadoop-new.nn1</name>

    <value>NN:50070</value>

</property>

<property>

    <name>dfs.namenode.http-address.hadoop-new.nn2</name>

    <value>SNN:50070</value>

</property>

<property>

    <name>dfs.namenode.name.dir</name>

    <value>file:///opt/rkdata/hadoop/name</value>

</property>

<property>

    <name>dfs.namenode.shared.edits.dir</name>

    <value>qjournal://DN1:8485;DN2:8485;DN3:8485/hadoop-new</value>

</property>

<property>

    <name>dfs.client.failover.proxy.provider.hadoop-new</name>

    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProv

ider</value>

</property>

<property>

    <name>dfs.datanode.data.dir</name>

    <value>file:///opt/rkdata/hadoop/data</value>

</property>

<property>

    <name>dfs.ha.automatic-failover.enabled</name>

    <value>true</value>

</property>

<property>

    <name>dfs.journalnode.edits.dir</name>

    <value>/opt/rkdata/hadoop/journal/</value>

</property>

<property>

    <name>heartbeat.recheck.interval</name>

    <value>5000</value>

</property>

<property>

    <name>dfs.ha.fencing.methods</name>

    <value>sshfence</value>

</property>

<property>

    <name>dfs.ha.fencing.ssh.private-key-files</name>

    <value>/home/hadoop/.ssh/id_rsa</value>

</property>

<property>

    <name>dfs.ha.fencing.ssh.connect-timeout</name>

    <value>5000</value>

</property>

</configuration>

3.3.6 mapred-site.xml

默认没有mapred-site.xml文件,需要从摸板复制一个:

$ cp mapred-site.xml.template mapred-site.xml

然后修改/opt/modules/hadoop-2.7.3/etc/mapred-site.xml:

$ vi /opt/modules/hadoop-2.7.3/etc/hadoop/mapred-site.xml

找到以下内容:

<configuration>

</configuration>

在两行中间插入配置信息后内容如下:

 

<configuration>

<property>

    <name>mapreduce.framework.name</name>

    <value>yarn</value>

</property>

<property>

    <name>mapreduce.jobhistory.address</name>

    <value>SNN:10020</value>

</property>

<property>

    <name>mapreduce.jobhistory.webapp.address</name>

    <value>SNN:19888</value>

</property>

</configuration>

3.3.7 yarn-site.xml

修改/opt/modules/hadoop-2.7.3/etc/yarn-site.xml:

$ vi /opt/modules/hadoop-2.7.3/etc/hadoop/yarn-site.xml

5 找到以下内容:

<configuration>

</configuration>

6 在两行中间插入配置信息后内容如下:

<property>

    <name>yarn.resourcemanager.hostname</name>

    <value>SY-0217</value>

</property>

<property>

    <name>yarn.resourcemanager.address</name>

    <value>${yarn.resourcemanager.hostname}:8032</value>

</property>

<property>

    <name>yarn.resourcemanager.scheduler.address</name>

    <value>${yarn.resourcemanager.hostname}:8030</value>

</property>

<property>

    <name>yarn.resourcemanager.webapp.address</name>

    <value>${yarn.resourcemanager.hostname}:8088</value>

</property>

<property>

    <name>yarn.resourcemanager.webapp.https.address</name>

    <value>${yarn.resourcemanager.hostname}:8090</value>

</property>

<property>

    <name>yarn.resourcemanager.resource-tracker.address</name>

    <value>${yarn.resourcemanager.hostname}:8031</value>

</property>

<property>

    <name>yarn.resourcemanager.admin.address</name>

    <value>${yarn.resourcemanager.hostname}:8033</value>

</property>

<property>

    <name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairSchedule

r</value>

</property>

<property>

    <name>yarn.scheduler.fair.allocation.file</name>

    <value>${yarn.home.dir}/etc/hadoop/fairscheduler.xml</value>

</property>

<property>

    <name>yarn.nodemanager.aux-services</name>

    <value>mapreduce_shuffle</value>

</property>

<property>

    <name>yarn.nodemanager.local-dirs</name>

    <value>/opt/rkdata/hadoop/yarn/local</value>

</property>

<property>

    <name>yarn.log-aggregation-enable</name>

    <value>true</value>

</property>

<property>

    <name>yarn.nodemanager.remote-app-log-dir</name>

    <value>/tmp/logs</value>

</property>

</configuration>

5复制文件到其他节点(主节点)

hadoop目录复制到其他各节点:

scp -r /opt/modules/hadoop-2.7.3 hadoop@SNN:/opt/modules/

scp -r /opt/modules/hadoop-2.7.3 hadoop@NN1:/opt/modules/

scp -r /opt/modules/hadoop-2.7.3 hadoop@NN2:/opt/modules/

scp -r /opt/modules/hadoop-2.7.3 hadoop@NN3:/opt/modules/

 

 

 

             zookeeper集群安装

1zookeeper集群部署环境配置 (root用户)

序号

节点类型

主机名

IP地址

操作系统环境及硬件配置

1

zookeeper

NN1

10.64.39.143

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

1

zookeeper

NN2

10.64.39.144

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

2

zookeeper

NN3

10.64.39.145

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

 

2、官网下载安装包,并解压。

 

wget http://apache.fayea.com/zookeeper/zookeeper-3.4.10/zookeeper-3.4.10.tar.gztar -zxvf zookeeper-3.4.10.tar.gz

 

3、生成配置文件(软件部署在/usr/local

Cp –r zookeeper-3.4.10 /usr/local/zookeeper-3.4.10

cd /usr/local/zookeeper-3.4.10

cp conf/zoo_sample.cfg conf/zoo.cfg

vim conf/zoo.cfg

 

# 心跳间隔 毫秒

tickTime=2000

# 初始化时,允许的超时心跳间隔次数

initLimit=10

# Leader 与 Follower 同步数据允许的超时心跳间隔次数

syncLimit=5

# 监听端口

clientPort=2181

# 数据目录

dataDir=/data/zookeeper/data

# 日志目录

dataLogDir=/data/zookeeper/logs

# ZooKeeper Server 地址,通信端口、选举端口

server.1=10.64.39.143:2888:3888

server.2=10.64.39.144:2888:3888

server.3=10.64.39.145:2888:3888

 

4、同步程序到其他节点

 

 

Scp –r /usr/local/zookeeper-3.4.10 root@10.64.39.144: /usr/local/

Scp –r /usr/local/zookeeper-3.4.10 root@10.64.39.145: /usr/local/

 

5、创建目录、生成节点标识文件(所有节点)

mkdir -p /data/zookeeper/{data,logs}

生成节点标识文件

shell > echo 1 > /data/zookeeper/data/myid

 

shell > echo 2 > /data/zookeeper/data/myid

 

shell > echo 3 > /data/zookeeper/data/myid

# 分别在三台服务器上执行,需要跟配置文件中的 server.1\2\3 对应

 

 

6、启动zookeeper集群并检测

 启动 ZooKeeper(各个节点去启动)

 

shell > /usr/local/zookeeper-3.4.10/bin/zkServer.sh start

 Starting zookeeper ... STARTEDZooKeeper JMX enabled by default

Using config: /usr/local/zookeeper-3.4.10/bin/../conf/zoo.cfg

 

 

 

# 全部成功启动

 

shell > /usr/local/zookeeper-3.4.10/bin/zkServer.sh status

ZooKeeper JMX enabled by default

Using config: /usr/local/zookeeper-3.4.10/bin/../conf/zoo.cfg

Mode: leader

# 查看状态,nn1 为 leader ,其余两台为 follower

5、验证选举

shell > sh bin/zkServer.sh stop

# 关闭 datanode03.hadoop 服务器上的 ZooKeeper,原 leader

 

shell > /usr/local/zookeeper-3.4.10/bin/zkServer.sh status

datanode03.hadoop | FAILED | rc=1 >>

Error contacting service. It is probably not running.ZooKeeper JMX enabled by default

Using config: /usr/local/zookeeper-3.4.10/bin/../conf/zoo.cfg

datanode02.hadoop | SUCCESS | rc=0 >>

ZooKeeper JMX enabled by default

Using config: /usr/local/zookeeper-3.4.10/bin/../conf/zoo.cfg

Mode: leader

datanode01.hadoop | SUCCESS | rc=0 >>

ZooKeeper JMX enabled by default

Using config: /usr/local/zookeeper-3.4.10/bin/../conf/zoo.cfg

Mode: follower

 

# 再次查看状态,datanode02.hadoop 升级为 leader,datanode01.hadoop 仍为 follower

# 注意:三台 ZooKeeper Server 组成的集群,当两台故障时,整个集群失败 ( 剩余的一台无法继续提供服务 )

6、客户端连接

shell > sh bin/zkCli.sh -server 10.64.39.143:2181, 10.64.39.144:2181, 10.64.39.145:2181

# 注意:

# 客户端连接集群,只写一个地址时,当这台 Server 宕机,则客户端连接失败

# 同时写多个地址( 全写 )时,除集群失败外,不影响客户端连接

# 写多个地址时,以 , 分割,, 两边不能有空格

shell > sh bin/zkCli.sh -server 192.168.1.27:2181

[zk: 192.168.1.27:2181(CONNECTED) 0] ls /

[zookeeper]

# 客户端只连接 1.27,显示只有一个默认的 znode

 

shell > sh bin/zkCli.sh -server 192.168.1.28:2181

[zk: 192.168.1.28:2181(CONNECTED) 0] ls /

[zookeeper]

[zk: 192.168.1.28:2181(CONNECTED) 1] create /zk 'mydata'

Created /zk

[zk: 192.168.1.28:2181(CONNECTED) 2] ls /

[zk, zookeeper]

[zk: 192.168.1.28:2181(CONNECTED) 3] get /zk

mydata

cZxid = 0x400000005

ctime = Thu May 04 18:50:06 CST 2017

mZxid = 0x400000005

mtime = Thu May 04 18:50:06 CST 2017

pZxid = 0x400000005

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 6

numChildren = 0

 

# 新客户端连接 1.28,创建一个 znode

 

shell >

[zk: 192.168.1.27:2181(CONNECTED) 1] ls /

[zk, zookeeper]

[zk: 192.168.1.27:2181(CONNECTED) 2] get /zk

mydata

cZxid = 0x400000005

ctime = Thu May 04 18:50:06 CST 2017

mZxid = 0x400000005

mtime = Thu May 04 18:50:06 CST 2017

pZxid = 0x400000005

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 6

numChildren = 0

 

# 刚才连接的 1.27,可以显示、获取这个新建的 znode

 

shell >

[zk: 192.168.1.27:2181(CONNECTED) 3] set /zk 'share'

cZxid = 0x400000005

ctime = Thu May 04 18:50:06 CST 2017

mZxid = 0x400000006

mtime = Thu May 04 18:57:48 CST 2017

pZxid = 0x400000005

cversion = 0

dataVersion = 1

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 5

numChildren = 0

 

# 给这个 znode 重新设置一个值

 

shell >

[zk: 192.168.1.28:2181(CONNECTED) 4] get /zk       

share

cZxid = 0x400000005

ctime = Thu May 04 18:50:06 CST 2017

mZxid = 0x400000006

mtime = Thu May 04 18:57:48 CST 2017

pZxid = 0x400000005

cversion = 0

dataVersion = 1

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 5

numChildren = 0

 

# 连接 1.28 的客户端,也获取到了更新后的值

shell >

[zk: 192.168.1.28:2181(CONNECTED) 4] delete /zk

[zk: 192.168.1.28:2181(CONNECTED) 5] ls /

# 删除创建的 znode

 

     Hadoop集群与zookeeper配置关联并启动(hadoop用户)

1、修改 core-site.xml

More /opt/modules/hadoop-2.7.3/etc/hadoop/core-site.xml

<configuration>

<property>

    <name>fs.defaultFS</name>

    <value>hdfs://hadoop-new</value>

</property>

<property>

    <name>hadoop.tmp.dir</name>

    <value>/opt/rkdata/hadoop/tmp</value>

</property>

<property>

    <name>ipc.maximum.data.length</name>

    <value>134217728</value>

</property>

<property>

    <name>io.file.buffer.size</name>

        <value>131072</value>

</property>

 

<property>

    <name>fs.trash.interval</name>

        <value>1440</value>

</property>

 

<property>

    <name>ha.zookeeper.quorum</name>

        <value>10.64.39.143:2181,10.64.39.144:2181,10.64.39.145:2181</value>

</property>

 

<property>

    <name>ha.zookeeper.session-timeout.ms</name>

        <value>5000</value>

</property>

 

</configuration>

 

 

# fs.defaultFS 指定的不再是某台 NameNode 的地址,是一个逻辑名称 ( hdfs-site.xml 文件中定义 )

# ha.zookeeper.quorum 指定 ZooKeeper Server 地址

# ha.zookeeper.session-timeout NameNode 与 ZooKeeper Server 超时时间,超时会发生主备切换

2、修改hdfs-site.xml

 More /opt/modules/hadoop-2.7.3/etc/hadoop/hdfs-site.xml

 

<configuration>

<property>

    <name>dfs.nameservices</name>

    <value>hadoop-new</value>

</property>

<property>

    <name>dfs.replication</name>

    <value>3</value>

</property>

<property>

    <name>dfs.permissions</name>

    <value>false</value>

</property>

<property>

    <name>dfs.ha.namenodes.hadoop-new</name>

    <value>nn1,nn2</value>

</property>

<property>

    <name>dfs.namenode.rpc-address.hadoop-new.nn1</name>

    <value>NN:8020</value>

</property>

<property>

    <name>dfs.namenode.rpc-address.hadoop-new.nn2</name>

    <value>SNN:8020</value>

</property>

<property>

    <name>dfs.namenode.http-address.hadoop-new.nn1</name>

    <value>NN:50070</value>

</property>

<property>

    <name>dfs.namenode.http-address.hadoop-new.nn2</name>

    <value>SNN:50070</value>

</property>

<property>

    <name>dfs.namenode.name.dir</name>

    <value>file:///opt/rkdata/hadoop/name</value>

</property>

<property>

    <name>dfs.namenode.shared.edits.dir</name>

    <value>qjournal://DN1:8485;DN2:8485;DN3:8485/hadoop-new</value>

</property>

<property>

    <name>dfs.client.failover.proxy.provider.hadoop-new</name>

    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProv

ider</value>

</property>

<property>

    <name>dfs.datanode.data.dir</name>

    <value>file:///opt/rkdata/hadoop/data</value>

</property>

<property>

    <name>dfs.ha.automatic-failover.enabled</name>

    <value>true</value>

</property>

<property>

    <name>dfs.journalnode.edits.dir</name>

    <value>/opt/rkdata/hadoop/journal/</value>

</property>

<property>

    <name>heartbeat.recheck.interval</name>

    <value>5000</value>

</property>

<property>

    <name>dfs.ha.fencing.methods</name>

    <value>sshfence</value>

</property>

<property>

    <name>dfs.ha.fencing.ssh.private-key-files</name>

    <value>/home/hadoop/.ssh/id_rsa</value>

</property>

<property>

    <name>dfs.ha.fencing.ssh.connect-timeout</name>

    <value>5000</value>

</property>

</configuration>

 

3、初始化、启动 NameNode HA

 1、NN初始化 zkfc

shell > su - hadoop

 

hadoop shell > /opt/modules/hadoop-2.7.3/bin/hdfs zkfc -formatZK

 

INFO ha.ActiveStandbyElector: Successfully created /hadoop-ha/myhdfs in ZK.

2、DN1、DN2、DN3启动 journalnode

hadoop shell > /opt/modules/hadoop-2.7.3/sbin/hadoop-daemon.sh start journalnode

3、初始化 namenode,启动 NameNode(hadoop-new集群名称配置文件里面)

hadoop shell > /opt/modules/hadoop-2.7.3/bin/hadoop namenode -format hadoop-new

 

hadoop shell > /opt/modules/hadoop-2.7.3/sbin/hadoop-daemon.sh start namenode

4、backup.hadoop 拷贝元数据、启动 NameNode

hadoop shell > /opt/modules/hadoop-2.7.3/bin/hdfs namenode -bootstrapStandby  

# 从 master.hadoop 拷贝 NameNode 元数据

 

hadoop shell >/opt/modules/hadoop-2.7.3/sbin/hadoop-daemon.sh start namenode

5、master.hadoop、backup.hadoop 启动 zkfc

hadoop shell > /opt/modules/hadoop-2.7.3/sbin/hadoop-daemon.sh start zkfc

6、NN启动 YARN

hadoop shell >  /opt/modules/hadoop-2.7.3/sbin/start-yarn.sh

6、DN1、DN2、DN3启动 DataNode

hadoop shell > /opt/modules/hadoop-2.7.3/sbin/hadoop-daemon.sh start datanode

 

 

启动完成后 使用jps 可以看到以下进程

# master.hadoop

8067 NameNode

8230 DFSZKFailoverController

# backup.hadoop

8255 NameNode

8541 DFSZKFailoverController

# datanode.hadoop

13227 DataNode

13000 NodeManager

12889 JournalNode

七、验证 NameNode HA

# 访问 http://10.64.39.140:50070 显示 active

# 访问 http://10.64.39.142:50070 显示 standby

hadoop shell > kill 8067  # 杀掉 master.hadoop 上的 NameNode

 

hadoop shell > tail -f /usr/local/hadoop-2.8.0/logs/hadoop-hadoop-zkfc-backup.hadoop.log  # backup.hadoop 监控 zkfc 日志

 

2017-05-22 14:08:50,035 INFO org.apache.hadoop.ha.ZKFailoverController: Trying to make NameNode at backup.hadoop/10.64.39.142:8020 active...

2017-05-22 14:08:50,846 INFO org.apache.hadoop.ha.ZKFailoverController: Successfully transitioned NameNode at backup.hadoop/10.64.39.142:8020 to active state

4、验证及平常停止启动hadoop

 

 

 

 

Hadoop用户停止140上执行/opt/modules/hadoop-2.7.3/sbin/stop-all.sh

 

Hadoop用户启动140上执行/opt/modules/hadoop-2.7.3/sbin/start-all.sh

143144145上执行

Root 停止zookeerper /usr/local/zookeeper-3.4.10/bin/zkServer.sh stop

Root 启动zookeerper /usr/local/zookeeper-3.4.10/bin/zkServer.sh start

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hbase集群安装

 

 

 

 

 

序号

节点类型

主机名

IP地址

操作系统环境及硬件配置

1

Masert

NN

10.64.39.140

OS:REDHAT 6.4 64位

CPU:8CPU

内存:60G

划分数据存储容量:100G+2T

2

backup

SNN

10.64.39.142

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

3

servers

DN1

10.64.39.143

OS:REDHAT 6.4 64位

CPU:8CPU

内存:60G

划分数据存储容量:100G+2T

4

servers

DN2

10.64.39.144

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

5

servers

DN3

10.64.39.145

OS:REDHAT 6.4 64位

CPU:8CPU

内存:12G

划分数据存储容量:100G+2T+5T

 

 

1、新建用户

 

所有节点

Useradd hbase

Echo hbase|passwd –stdin hbase

2、配置文件hbase-env.sh

 

Vim /opt/hbase-2.0.4/conf/ hbase-env.sh  修改下面两项

export JAVA_HOME=/opt/modules/jdk1.8.0_101/

export HBASE_MANAGES_ZK=false

3、配置hbase-site.xml

 

Vim /opt/hbase-2.0.4/conf/hbase-site.xml

在configuration标签之间加入如下配置:

 

    <!-- 指定HBase在HDFS上面创建的目录名hbase -->

    <property>

        <name>hbase.rootdir</name>

        <value>hdfs:// hadoop-new/hbase</value>

<!-- hadoop-new 是HDFS的集群名称 -->

    <!-- 开启集群运行方式 -->

    <property>

        <name>hbase.cluster.distributed</name>

        <value>true</value>

    </property>

    <property>

        <name>hbase.tmp.dir</name>

        <value>/opt/hbase-2.0.4/tmp</value>

    </property>

    <property>

        <name>hbase.zookeeper.quorum</name>

        <value>DN1,DN2,DN3</value>

    </property>

3copy  hadoop的两个配置到hbase里面

 

Cp /opt/modules/hadoop-2.7.3/etc/hadoop/core-site.xml /opt/hbase-2.0.4/conf/

Cp /opt/modules/hadoop-2.7.3/etc/hadoop/hdfs-site.xml /opt/hbase-2.0.4/conf/

修改者两个文件的所有者

chown hbase:hbase core-site.xml hdfs-site.xml

4、修改regionservers backup-masters

 

More /opt/hbase-2.0.4/conf/regionservers

DN1

DN2

DN3

#相当于hadoop slaves中的dataNode节点

 

Echo ‘NN’>>/opt/hbase-2.0.4/conf/backup-masters

 

#相当于hadoop back-maser中的dataNode节点

 

 

5、配置hbase用户的ssh免密登录

140用户hbase

ssh-keygen

ssh-copy-id hbase@10.64.39.142

ssh-copy-id hbase@10.64.39.143

ssh-copy-id hbase@10.64.39.144

ssh-copy-id hbase@10.64.39.145

ssh hbase@NN

ssh hbase@SNN

ssh hbase@DN1

ssh hbase@DN2

ssh hbase@DN3

142用户hbase

ssh-keygen

ssh-copy-id hbase@10.64.39.140

ssh-copy-id hbase@10.64.39.143

ssh-copy-id hbase@10.64.39.144

ssh-copy-id hbase@10.64.39.145

ssh hbase@NN

ssh hbase@SNN

ssh hbase@DN1

ssh hbase@DN2

ssh hbase@DN3

 

143用户hbase

ssh-keygen

ssh-copy-id hbase@10.64.39.140

ssh-copy-id hbase@10.64.39.142

ssh-copy-id hbase@10.64.39.144

ssh-copy-id hbase@10.64.39.145

ssh hbase@NN

ssh hbase@SNN

ssh hbase@DN1

ssh hbase@DN2

ssh hbase@DN3

 

 

6、将程序分发到其他节点 root用户

 

scp -r /opt/hbase-2.0.4 root@DN3:/opt/

scp -r /opt/hbase-2.0.4 root@DN2:/opt/

scp -r /opt/hbase-2.0.4 root@DN1:/opt/

scp -r /opt/hbase-2.0.4 root@SNN:/opt/

其他节点修改所属用户组

chown -R hbase:hbase /opt/hbase-2.0.4

7NN,SNN启动hbase maseter

 

Hbase用户  /opt/hbase-2.0.4/bin/hbase-daemon.sh start master

 

8DN1,DN2,DN3启动regionserver

Hbase用户:/opt/hbase-2.0.4/bin/hbase-daemon.sh start regionserver

9、查看hbase是否在hdfs文件系统创建成功

 

Hadoop用户:/opt/modules/hadoop-2.7.3/bin/hdfs dfs -ls /

 

10、停止hbase服务

 

DN1,DN2,DN3停止regionserver

Hbase用户:/opt/hbase-2.0.4/bin/hbase-daemon.sh stop regionserver

ps -ef|grep regionserver|grep -v grep|awk '{print $2}'|xargs kill -9

NN,SNN停止hbase maseter

Hbase用户  /opt/hbase-2.0.4/bin/hbase-daemon.sh stop master

ps -ef|grep hbase-2.0.4|grep -v grep |awk '{print $2}'|xargs kill -9

清空日志

rm -rf /opt/hbase-2.0.4/logs/*

11、登录NNhbase进行验证

 

 

/opt/hbase-2.0.4/bin/hbase shell

hbase(main):001:0> status

 

 

 

或者页面登录

 

 

 

12、平常启动 停止 hbase用户主节点上

/opt/hbase-2.0.4/bin/start-hbase.sh

/opt/hbase-2.0.4/bin/stop-hbase.sh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Storm安装

DN1DN2DN3部署storm集群,DN1作为Nimubs节点DN2DN3作为surpervisor节点

 

1、下载软件

wget http://apache.fayea.com/storm/apache-storm-1.2.2/apache-storm-1.2.2.tar.gz

2、解压软件到指定目录

 

tar –xvf apache-storm-1.2.2.tar.gz –O /usr/local/

3、配置storm

More /usr/local/apache-storm-1.2.2/conf/storm.yaml

storm.zookeeper.servers:

     - "DN1"

     - "DN2"

     - "DN3"

storm.local.dir: "/usr/local/apache-storm-1.2.2/status"

 

nimbus.seeds: ["DN1"]

 

supervisor.slots.ports:

    - 6700

    - 6701

    - 6702

    - 6703

注意:以上配置,凡是有冒号的地方,冒号后都要有个空格。

 

4、拷贝storm到集群其他节点。

 

scp -r /usr/local/apache-storm-1.2.2 root@DN3:/usr/local/

 

5、对于两台supervisor node,我们额外开启JMX支持,在配置文件中加入如下配置

Vim  /usr/local/apache-storm-1.2.2/conf/storm.yaml 新添加下面一行

supervisor.childopts: -verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.port=9998

 

9998就是用于通过JMX收集supervisior JVM指标的端口。

 

6、所有节点配置环境变量

 

Vim /etc/profile       添加两行

export STORM_HOME=/usr/local/apache-storm-1.2.2

export PATH=$STORM_HOME/bin:$PATH

重载一下环境变量

source /etc/profile

7、启动storm uiNimbusSupervisor

 

DN1节点启动nimbus和storm ui:

nohup storm ui >/dev/null 2>&1 &

nohup storm nimbus >/dev/null 2>&1 &

DN2DN3主机启动Supervisor节点:

nohup storm supervisor >/dev/null 2>&1 &

 

8、验证storm

 

http://10.64.39.143:8080/index.html

 

界面简单介绍:

Used slots:使用的worker数。

Free slots:空闲的worker数。

Executors:每个worker的物理线程数。

9、停止storm

 

DN1

ps -ef|grep daemon.name=ui|grep -v grep|awk '{print $2}'|xargs kill -9

ps -ef|grep name=nimbus|grep -v grep|awk '{print $2}'|xargs kill -9

DN2和DN3

ps -ef|grep supervisor|grep -v grep|awk '{print $2}'|xargs kill -9

 

Kafka集群安装

DN1DN2DN3上面安装kafka

1、下载kafka

Apache官网去下载

2、解压软件到指定目录

tar -zxvf kafka_2.12-2.1.0.tgz -O /opt/kafka/kafka_2.12-2.1.0

3、修改配置

Mkdir /opt/kafka/kafkalogs/

 

 

[root@DN1 config]# more server.properties |grep -v "^#"|grep -v "^$"

broker.id=0

port=9092

host.name=DN1

num.network.threads=3

num.io.threads=8

socket.send.buffer.bytes=102400

socket.receive.buffer.bytes=102400

socket.request.max.bytes=104857600

log.dirs=/opt/kafka/kafkalogs/

num.partitions=1

num.recovery.threads.per.data.dir=1

offsets.topic.replication.factor=1

transaction.state.log.replication.factor=1

transaction.state.log.min.isr=1

log.retention.hours=168

message.max.byte=5242880

default.replication.factor=2

replica.fetch.max.bytes=5242880

log.segment.bytes=1073741824

log.retention.check.interval.ms=300000

zookeeper.connect=DN1:2181,DN2:2181,DN3:2181

zookeeper.connection.timeout.ms=6000

group.initial.rebalance.delay.ms=0

 

#broker.id=0  每台服务器的broker.id都不能相同

#host_name 修改

4、启动Kafka集群并测试

 

启动:/opt/kafka/kafka_2.12-2.1.0/bin/kafka-server-start.sh -daemon /opt/kafka/kafka_2.12-2.1.0/config/server.properties

 

 

5、测试kafka集群

 

测试:/opt/kafka/kafka_2.12-2.1.0/bin/kafka-topics.sh --create --zookeeper 10.64.39.143:2181 --replication-factor 2 --partitions 1 --topic shuaige

#解释

--replication-factor 2   #复制两份

--partitions 1 #创建1个分区

--topic #主题为shuaige

'''在一台服务器上创建一个发布者'''

#创建一个broker,发布者

/opt/kafka/kafka_2.12-2.1.0/bin/kafka-console-producer.sh --broker-list 10.64.39.143:9092 --topic shuaige

 

'''在一台服务器上创建一个订阅者'''

/opt/kafka/kafka_2.12-2.1.0/bin/kafka-console-consumer.sh  --bootstrap-server 10.64.39.143:9092 --topic shuaige --from-beginning

 

查看topic

/opt/kafka/kafka_2.12-2.1.0/bin/kafka-topics.sh --list --zookeeper 10.64.39.143:2181

 

查看topic状态

/opt/kafka/kafka_2.12-2.1.0/bin/kafka-topics.sh --describe --zookeeper 10.64.39.143:2181 --topic shuaige

 

#下面是显示信息

Topic:ssports    PartitionCount:1    ReplicationFactor:2    Configs:

    Topic: shuaige    Partition: 0    Leader: 1    Replicas: 0,1    Isr: 1

#分区为为1  复制因子为2   他的  shuaige的分区为0

#Replicas: 0,1   复制的为0,1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

整个集群配置启动

Hadoopzookerper的启动停止

停止zookerper 143\144\145

Root用户:/usr/local/zookeeper-3.4.10/bin/zkServer.sh stop

启动

Root用户:/usr/local/zookeeper-3.4.10/bin/zkServer.sh start

 

Hadoop

停止140

Hadoop用户/opt/modules/hadoop-2.7.3/sbin/stop-all.sh

启动140

Hadoop用户/opt/modules/hadoop-2.7.3/sbin/start-all.sh

 

 

单节点命令启动 hadoop用户

/opt/modules/hadoop-2.7.3/sbin/hadoop-daemon.sh start journalnode

/opt/modules/hadoop-2.7.3/sbin/hadoop-daemon.sh start datanode

 

初始化hadoop

rm /opt/modules/hadoop-2.7.3/logs/* -rf

rm /opt/rkdata/hadoop/data/* -rf

rm /opt/rkdata1/hadoop/data/* -rf

rm /opt/rkdata/hadoop/name/* -rf

 

Hbase

停止140

hbase用户:/opt/hbase-2.0.4/bin/stop-hbase.sh

启动140

hbase用户:/opt/hbase-2.0.4/bin/start-hbase.sh

 

storm管理

root用户启动storm uiNimbusSupervisor

 

DN1节点启动nimbus和storm ui:

nohup storm ui >/dev/null 2>&1 &

nohup storm nimbus >/dev/null 2>&1 &

DN2DN3主机启动Supervisor节点:

nohup storm supervisor >/dev/null 2>&1 &

 

验证storm

 

http://10.64.39.143:8080/index.html

停止storm

 

DN1

ps -ef|grep daemon.name=ui|grep -v grep|awk '{print $2}'|xargs kill -9

ps -ef|grep name=nimbus|grep -v grep|awk '{print $2}'|xargs kill -9

DN2和DN3

ps -ef|grep supervisor|grep -v grep|awk '{print $2}'|xargs kill -9

 

启动Kafka集群

 

DN1、DN2、DN3 用Root用户启动:/opt/kafka/kafka_2.12-2.1.0/bin/kafka-server-start.sh -daemon /opt/kafka/kafka_2.12-2.1.0/config/server.properties

 

 

页面测试

Hadoop

http://10.64.39.140:50070/

http://10.64.39.142:50070/

http://10.64.39.140:8088/

hbase

http://10.64.39.140:16010/

http://10.64.39.142:16010/

storm

http://10.64.39.143:8080

 

 

 

hadoop namenode自动挂掉问题处理记录

more yarn-site.xml 修改

<property>

    <name>yarn.resourcemanager.hostname</name>

    <value>NN</value>  --修改名称

</property>

Hdfs-site.xml中增加配置:

<property>

    <name>dfs.qjournal.start-segment.timeout.ms</name>

    <value>9000</value>

</property>

<property>

    <name>dfs.qjournal.select-input-streams.timout.ms</name>

    <value>9000</value>

</property>

<property>

    <name>dfs.qjournal.write-txns.timeout.ms</name>

    <value>9000</value>

</property>

Core-site.xml中新增配置

<property>

    <name>ipc.client.connect.timeout</name>

        <value>9000</value>

</property>

hadoop namenode自动挂掉问题第二次处理记录

资源管理器配置ResourceManager

修改yarn-site.xml

<configuration>

 

<!-- Site specific YARN configuration properties -->

 

<property>

    <name>yarn.resourcemanager.hostname</name>

    <value>NN</value>

</property>

<property>

    <name>yarn.resourcemanager.address</name>

    <value>${yarn.resourcemanager.hostname}:8032</value>

</property>

<property>

    <name>yarn.resourcemanager.scheduler.address</name>

    <value>${yarn.resourcemanager.hostname}:8030</value>

</property>

<property>

    <name>yarn.resourcemanager.webapp.address</name>

    <value>${yarn.resourcemanager.hostname}:8088</value>

</property>

<property>

    <name>yarn.resourcemanager.webapp.https.address</name>

    <value>${yarn.resourcemanager.hostname}:8090</value>

</property>

<property>

    <name>yarn.resourcemanager.resource-tracker.address</name>

    <value>${yarn.resourcemanager.hostname}:8031</value>

</property>

<property>

    <name>yarn.resourcemanager.admin.address</name>

    <value>${yarn.resourcemanager.hostname}:8033</value>

</property>

 

 

<!--

<property>

    <name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>

</property>

<property>

    <name>yarn.scheduler.fair.allocation.file</name>

    <value>${yarn.home.dir}/etc/hadoop/fairscheduler.xml</value>

</property>

 

-->

<property>

    <name>yarn.nodemanager.aux-services</name>

    <value>mapreduce_shuffle</value>

</property>

<property>

    <name>yarn.nodemanager.local-dirs</name>

    <value>/opt/rkdata/hadoop/yarn/local</value>

</property>

<property>

    <name>yarn.log-aggregation-enable</name>

    <value>true</value>

</property>

<property>

    <name>yarn.nodemanager.remote-app-log-dir</name>

    <value>/tmp/logs</value>

</property>

<property>

    <name>yarn.nodemanager.aux-services</name>

    <value>mapreduce_shuffle</value>

</property>

<property>

    <name>yarn.nodemanager.maximum-allocation-mb</name>

    <value>8182</value>

</property>

<property>

    <name>yarn.nodemanager.vmem-pmem-ratio</name>

    <value>2.1</value>

</property>

<property>

    <name>yarn.nodemanager.resoruce.memory-mb</name>

    <value>8182</value>

</property>

</configuration>

------------------------------------------------------------------------------------

Habse建表报错

/opt/hbase-2.0.4/bin/hbase shell

 

create 'test','col1'  报错误 master exiting

处理方法:

1、 拷贝jar包到hbase

cp /opt/modules/hadoop-2.7.3/share/hadoop/tools/lib/aws-java-sdk-1.7.4.jar  /opt/hbase-2.0.4/lib/

2、 删除zookephbase目录

sh /usr/local/zookeeper-3.4.10/bin/zkServer.sh status

/usr/local/zookeeper-3.4.10/bin/zkCli.sh -server DN1:2181zookeper的主节点)

rmr /hbase

3、 重启hbase

SN1\SN2\SN3  ps -ef|grep regionserver|grep -v grep|awk '{print $2}'|xargs kill -9

SNN\NN  ps -ef|grep hbase-2.0.4|grep -v grep |awk '{print $2}'|xargs kill -9

 

 

NN    /opt/hbase-2.0.4/bin/start-hbase.sh

NN    /opt/hbase-2.0.4/bin/stop-hbase.sh

 

-----------------------------------

kafa --针对大容量消息优化

cat >>/opt/kafka/kafka_2.12-2.1.0/config/producer.properties <<EOF

max.request.size=20971520

buffer.memory=80971520

EOF

 

 

/opt/kafka/kafka_2.12-2.1.0/config/server.properties

 

 

cat /opt/kafka/kafka_2.12-2.1.0/config/server.properties|grep message.max

sed -i "s/message.max.byte=5242880/message.max.byte=20971520/g" /opt/kafka/kafka_2.12-2.1.0/config/server.properties

posted @ 2021-01-05 16:29  苍茫宇宙  阅读(148)  评论(0编辑  收藏  举报