转载:【AI系统】Transformer 模型小型化
自 Vision Transformer 出现之后,人们发现 Transformer 也可以应用在计算机视觉领域,并且效果还是非常不错的。但是基于 Transformer 的网络模型通常具有数十亿或数百亿个参数,这使得它们的模型文件非常大,不仅占用大量存储空间,而且在训练和部署过程中也需要更多的计算资源。所以在本文中会介绍关于 Transformer 一些轻量化工作。
MobileVit 系列
MobileVit V1
MobileVit V1 :MobileViT 是一种基于 ViT(Vision Transformer)架构的轻量级视觉模型,旨在适用于移动设备和嵌入式系统。ViT 是一种非常成功的神经网络模型,用于图像分类和其他计算机视觉任务,但通常需要大量的计算资源和参数。MobileViT 的目标是在保持高性能的同时,减少模型的大小和计算需求,以便在移动设备上运行,据作者介绍,这是第一次基于轻量级 CNN 网络性能的轻量级 ViT 工作,性能 SOTA。性能优于 MobileNetV3、CrossviT 等网络。
Mobile ViT 块
标准卷积涉及三个操作:展开+局部处理+折叠,利用 Transformer 将卷积中的局部建模替换为全局建模,这使得 MobileViT 具有 CNN 和 ViT 的性质。MobileViT Block 如下图所示:
从上面的模型可以看出,首先将特征图通过一个卷积层,卷积核大小为
多尺度采样训练
给定一系列排序的空间分辨率
MobileFormer 系列
MobileFormer
MobileFormer:一种通过双线桥将 MobileNet 和 Transformer 并行的结构。这种方式融合了 MobileNet 局部性表达能力和 Transformer 全局表达能力的优点,这个桥能将局部性和全局性双向融合。和现有 Transformer 不同,Mobile-Former 使用很少的 tokens(例如 6 个或者更少)随机初始化学习全局先验,计算量更小。
并行结构
Mobile-Former 将 MobileNet 和 Transformer 并行化,并通过双向交叉注意力连接(下见图)。Mobile(指 MobileNet)采用图像作为输入(
低成本双线桥
Mobile 和 Former 通过双线桥将局部和全局特征双向融合。这两个方向分别表示为 Mobile→Former 和 Mobile←Former。我们提出了一种轻量级的交叉注意力模型,其中映射(
其中局部特征 X 和全局 tokens Z 被拆分进入 h 个头,即
其中
其中
Mobile-Former 块
Mobile-Former 由 Mobile-Former 块组成。每个块包含四部分:Mobile 子块、Former 子块以及双向交叉注意力 Mobile←Former 和 Mobile→Former(如下图所示)。
输入和输出:Mobile-Former 块有两个输入:(a) 局部特征图
Mobile 子块:如上图所示,Mobile 子块将特征图
EfficientFormer 系列
EfficientFormer V1
EfficientFormer V1:基于 ViT 的模型中使用的网络架构和具体的算子,找到端侧低效的原因。然后引入了维度一致的 Transformer Block 作为设计范式。最后,通过网络模型搜索获得不同系列的模型 —— EfficientFormer。
EfficientFormer 结构
基于延迟分析,作者提出了 EfficientFormer 的设计,如上图所示。该网络由 patch 嵌入(PatchEmbed)和 meta transformer 块堆栈组成,表示为 MB:
其中
其中,
Dimension-consistent Design
作者提出了一种维度一致性设计,该设计将网络分割为 4D 分区,其中操作符以卷积网络样式实现(MB4D),以及一个 3D 分区,其中线性投影和注意力在 3D 张量上执行,以在不牺牲效率的情况下享受 MHSA 的全局建模能力(MB3D),如上图所示。具体来说,网络从 4D 分区开始,而 3D 分区应用于最后阶段。注意,上图只是一个实例,4D 和 3D 分区的实际长度稍后通过架构搜索指定。
首先,输入图像由一个具有两个步长为 2,感受野为 3×3 卷积的 Conv stem 处理:
其中,
其中,
在处理完所有 MB4D 块后,作者执行一次 reshape 以变换特征大小并进入 3D 分区。MB3D 遵循传统 ViT 结构,如上图所示:
其中,
其中 Q、K、V 表示通过线性投影学习的查询、键和值,b 表示作为位置编码的参数化注意力 bias。
如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 零经验选手,Compose 一天开发一款小游戏!
· 通过 API 将Deepseek响应流式内容输出到前端
· 因为Apifox不支持离线,我果断选择了Apipost!