操作系统学习---进程管理(一)
一、操作系统
1.1 操作系统结构图
操作系统是位于计算机硬件和应用软件之间的,有效组织和管理系统中各种软、硬件资源。它通过资源管理,提高了计算机系统的效率;也改善了人机界面,不需要我们直接面对简单且复杂的0和1了,向用户提供了友好的工作环境。
1.2 任务调度:
大部分操作系统(如Windows、Linux)的任务调度是采用时间片轮转的抢占式调度方式,也就是说一个任务执行一小段时间后强制暂停去执行下一个任务,每个任务轮流执行。任务执行的一小段时间叫做时间片,任务正在执行时的状态叫运行状态,任务执行一段时间后强制暂停去执行下一个任务,被暂停的任务就处于就绪状态等待下一个属于它的时间片的到来。这样每个任务都能得到执行,由于CPU的执行效率非常高,时间片非常短,在各个任务之间快速地切换,给人的感觉就是多个任务在“同时进行”,这也就是我们所说的并发(别觉得并发有多高深,它的实现很复杂,但它的概念很简单,就是一句话:多个任务同时执行)。多任务运行过程的示意图如下:
操作系统中的任务调度
作业:用户在一次解决或是一个事务处理过程中要求计算机系统所做的工作的集合,它包括用户程序、所需要的数据集控制命令等。作业是由一系列有序的步骤组成的。作业的完成要经过作业提交、作业收容、作业执行和作业完成4个阶段。在执行一个作业可能会运行多个不同的进程。
进程:程序在一个数据集上的一次运行过程。是操作系统资源分配的基本单位。
在Windows下,进程又被细化为线程,也就是一个进程下有多个能独立运行的更小的单位. 进程还拥有一个私有的虚拟地址空间,该空间仅能被它所包含的线程访问。
线程:是进程中的一个实体,是被操作系统独立调度和执行的基本单位。一个进程包含一个或多个线程。线程只能归属于一个进程并且它只能访问该进程所拥有的资源。当操作系统创建一个进程后,该进程会自动申请一个名为主线程或首要线程的线程。主线程将执行运行时宿主, 而运行时宿主会负责载入CLR。
简单总结:
作业是向计算机提交任务的任务实体,
而进程是执行实体,是资源分配的基本单位,
线程是处理机调度的基本单位。
二、进程
我们都知道计算机的核心是CPU,它承担了所有的计算任务;而操作系统是计算机的管理者,它负责任务的调度、资源的分配和管理,统领整个计算机硬件;应用程序侧是具有某种功能的程序,程序是运行于操作系统之上的。
2.1 进程的概念主要有两点:
第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。
文本区域存储处理器执行的代码;
数据区域存储变量和进程执行期间使用的动态分配的内存;
堆栈区域存储着活动过程调用的指令和本地变量。
第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时,它才能成为一个活动的实体,我们称其为进程。
进程是一个具有一定独立功能的程序在一个数据集上的一次动态执行的过程,是操作系统进行资源分配和调度的一个独立单位,是应用程序运行的载体。
2.2 进程特征
动态性:进程的实质是程序在多道程序系统中的一次执行过程,进程是动态产生,动态消亡的。
并发性:任何进程都可以同其他进程一起并发执行
独立性:进程是一个能独立运行的基本单位,同时也是系统分配资源和调度的独立单位;
异步性:由于进程间的相互制约,使进程具有执行的间断性,即进程按各自独立的、不可预知的速度向前推进
结构特征:进程由程序、数据和进程控制块三部分组成。
多个不同的进程可以包含相同的程序:一个程序在不同的数据集里就构成不同的进程,能得到不同的结果;但是执行过程中,程序不能发生改变。
2.3 进程和作业的区别
1、作业是用户向计算机提交任务的任务实体。在用户向计算机提交作业后,系统将它放入外存中的作业等待队列中等待执行。而进程则是完成用户任务的执行实体,是向系统申请分配资源的基本单位。任一进程,只要它被创建,总有相应的部分存在于内存中。
2、一个作业可由多个进程组成,且必须至少由一个进程组成,反过来则不成立。
3、作业的概念主要用在批处理系统中,像UNIX这样的分时系统中就没有作业的概念。而进程的概念则用在几乎所有的多道程序系统中
2.4 进程和程序的区别
1、程序是静态概念,本身可以作为一种软件资源保存;而进程是程序的一次执行过程,是动态概念,它有一定的生命期,是动态地产生和消亡的。
2、进程是一个能独立运行的单位,能与其他进程并发执行,进程是作为资源申请和调度单位存在的;而通常的程序段不能作为一个独立运行的单位。
3、程序和进程无一一对应关系。一方面一个程序可由多个进程共用;另一方面,一个进程在活动中又可顺序地执行若干个程序。
2.5 进程的状态
进程执行时的间断性,决定了进程可能具有多种状态。事实上,运行中的进程可能具有以下三种基本状态。
进程已获得除处理器外的所需资源,等待分配处理器资源;只要分配了处理器进程就可执行。就绪进程可以按多个优先级来划分队列。例如,当一个进程由于时间片用完而进入就绪状态时,排入低优先级队列;当进程由I/O操作完成而进入就绪状态时,排入高优先级队列。
(2) 运行状态(Running):
进程占用处理器资源;处于此状态的进程的数目小于等于处理器的数目。在没有其他进程可以执行时(如所有进程都在阻塞状态),通常会自动执行系统的空闲进程。
(3) 阻塞状态(Blocked):
由于进程等待某种条件(如I/O操作或进程同步),在条件满足之前无法继续执行。该事件发生前即使把处理机分配给该进程,也无法运行。
进程状态的转换
2.6 进程状态五态模型
五态模型状态转换图
2.7 Windows 和linux进程
进程创建
Windows:win32接口,函数CreateProcess。
Linux:fork函数,父子进程的区别PPID和PID。
Linux中的进程的含义和WINDOWS中是不一样的。Linux中的进程本身是可以执行的。而Windows中,进程只是表示一个资源的拥有体,是不能执行的。要执行的话,一定需要一个线程。这也部分解释了为什么CreateProcess中为啥一定要传入要执行的文件的名字。Linux子进程直接使用父亲的地址空间,只有子进程加载一个新的可执行文件的时候才创建自己的地址空间。也就是很多时候共享地址空间,有个函数(忘了)就是如果决定开始写入,则将资源拷贝一份;如果此时突然决定不需要写入,此时就能避免系统资源的消耗。
linux进程相当于WINDOWS中的线程,所以同WINDOWS中的线程创建相比,二者的开销应该差不多。
执行:LINUX:exec,
WNDOWS:WIN32函数CreateProcess。
底层:两者大部分都是C和汇编,使用了不少宏定义,简化地址运算和程序结构,如定义一个空地址:0x000000表示NULL。
内核:
WINDOWS:相对稳定的API,就是向后兼容,我们总是看到兼容的字眼。升级方便,过于臃肿。复杂的继承关系,藏得结结实实的代码。
LINUX:不固定的接口,为了更加的技术化,所以LINUX一直改进,很多时候偏离了桌面用户。头文件和执行文件也就是一些算法的改进和函数改进。如果你看完2.4的内核后,再看2.6的内核差异不大,但是不少。升级复杂,考虑的东西太多。
进程算法(优先级):
LINUX:图形界面少点,内核支持抢占的同时又支持CFS公平调度算法。二叉树、红黑树等算法。
WINDOWS:进程假死现象普遍,采用阻塞算法,很多时候导致不流畅、卡死。现在win7做了相当大的改进。算法不清楚,以前阻塞编程的不少。内存:基本上两者差不多,在X86你懂得。
WINDOS里的进程/线程是继承自OS/2的。在WINDOS里,"进程"是指一个程序,而"线程"是一个"进程"里的一个执行"线索"。从核心上讲, WINDOS的多进程与Linux并无多大的区别,在WINDOS里的线程才相当于Linux的进程,是一个实际正在执行的代码。但是,WINDOS里同一个进程里各个线程之间是共享数据段的。这才是与Linux的进程最大的不同。
2.8 进程通信
windows的进程间的通信方式有:
1.文件映射;
2. 共享内存(是文件映射的一种特殊情况);
3.邮件槽(mailslot)(点对点消息队列);
4.匿名管道;
5.命名管道;
6. 剪贴板;
7.动态数据交换;
8.对象链接与嵌入;
9.远程过程调用;
10.动态链接库;
11.socket;
12.WM_COPYDATA .
Linux进程间通信的方式有:
1.管道
2.信号量
3.共享内存
4.消息队列
5.套接字
6.信号
2.9 进程总结
(1) 创建进程。系统在创建进程时,必须为之分配其所必需的、除处理机以外的所有资源。如内存空间、I/O设备以及建立相应的PCB结构。
(2) 撤消进程。系统在撤消进程时,又必须先对这些资源进行回收操作,然后再撤消PCB结构。
(3) 进程切换。在对进程进行切换时,由于要保留当前进程的CPU环境和设置新选中进程的CPU环境,为此需花费不少处理机时间。
三、线程
3.1 线程的引入
在早期的操作系统中并没有线程的概念,进程是能拥有资源和独立运行的最小单位,也是程序执行的最小单位。任务调度采用的是时间片轮转的抢占式调度方式,而进程是任务调度的最小单位,每个进程有各自独立的一块内存,使得各个进程之间内存地址相互隔离。
后来,随着计算机的发展,对CPU的要求越来越高,进程之间的切换开销较大,已经无法满足越来越复杂的程序的要求了。于是就发明了线程,线程是程序执行中一个单一的顺序控制流程,是程序执行流的最小单元,是处理器调度和分派的基本单位。一个进程可以有一个或多个线程,各个线程之间共享程序的内存空间(也就是所在进程的内存空间)。一个标准的线程由线程ID、当前指令指针(PC)、寄存器和堆栈组成。而进程由内存空间(代码、数据、进程空间、打开的文件)和一个或多个线程组成。
3.2 线程特征
1、线程的执行状态包括运行、就绪和等待。
2、进程中的所有线程共享所属进程内的主存和其他资源。
3、拥有自己的线程控制块和执行栈,寄存器。
3.3 线程属性
在多线程OS中,通常是在一个进程中包括多个线程,每个线程都是作为利用CPU的基本单位,是花费最小开销的实体。线程具有以下属性。
(1) 轻型实体
线程中的实体基本上不拥有系统资源,只是有一点必不可少的、能保证独立运行的资源,比如,在每个线程中都应具有一个用于控制线程运行的线程控制块TCB,用于指示被执行指令序列的程序计数器、保留局部变量、少数状态参数和返回地址等的一组寄存器和堆栈。
(2) 独立调度和分派的基本单位。
在多线程OS中,线程是能独立运行的基本单位,因而也是独立调度和分派的基本单位。由于线程很“轻”,故线程的切换非常迅速且开销小。
(3)可并发执行。
在一个进程中的多个线程之间,可以并发执行,甚至允许在一个进程中所有线程都能并发执行;同样,不同进程中的线程也能并发执行。
(4)共享进程资源。
在同一进程中的各个线程,都可以共享该进程所拥有的资源,这首先表现在:所有线程都具有相同的地址空间(进程的地址空间),这意味着,线程可以访问该地址空间的每一个虚地址;此外,还可以访问进程所拥有的已打开文件、定时器、信号量机构等。
3.4 进程和线程的区别:
线程和进程的区别在于,子进程和父进程有不同的代码和数据空间,而多个线程则共享数据空间,每个线程有自己的执行堆栈和程序计数器为其执行上下文。多线程主要是为了节约CPU时间,发挥利用多处理器功能。线程的运行中需要使用计算机的内存资源和CPU。
通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源。在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。由于线程比进程更小,基本上不拥有系统资源,故对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度,从而显著提高系统资源的利用率和吞吐量。
① 在调度方面,线程是调度和指派的基本单位,而进程是资源拥有的基本单位。在同一进程中,线程的切换不会引起进程切换。在不同的进程中进行线程切换,如一个进程内的线程切换到另一个进程中的线程时,将会引起进程切换。
② 在拥有资源方面,线程不拥有系统资源,但可以访问其隶属进程的系统资源,从而获得系统资源。 进程间相互独立,同一进程的各线程间共享进程的地址空间。某进程内的线程对其它进程不可见。
③ 在并发性方面,在引入线程的操作系统中,不仅进程之间可以并发执行,而且同一进程内的多线程之间也可并发执行,从而使操作系统具有更好的并发性,大大提高系统的吞吐量。
④ 调度切换的系统开销方面,进程切换时的时空开销很大,但线程切换时,只需保存和设置少量寄存器内容,因此开销很小。
另外通信方面,进程间通信IPC,而线程通信由于同一进程内的多个线程共享进程的相同地址空间,线程间可以直接读写进程数据段(如全局变量)来进行通信。因此,多线程之间的同步与通信非常容易实现,甚至无须操作系统内核的干预
在多线程OS中,进程不是一个可执行的实体。
3.5 引入线程的好处:
(1) 易于调度。线程占用内存少,易于切换,可以轻装运行。
(2) 提高并发性。由于线程占用内存少,在内存中一次容纳的线程就多。这样有利于提高程序的并发与并行程度。
(3) 开销少。创建线程比创建进程开销少。
(4) 利于充分发挥多处理器功能。在多处理器系统中,一个进程通过创建多个线程,让每个线程在不同的处理器上运行,进一步提高并发性。
3.6 用户级线程和内核支持线程,比较两种线程的优缺点 :
1.线程的调度与切换速度:内核支持线程的调度和切换与进程的调度和切换十分相似。
2.系统功能调用:当传统的用户进程调用一个系统功能调用时,要由用户态进入核心态,用户进程将被阻塞。当内核完成系统调用而返回时,才将该进程唤醒,继续执行。
3.线程执行时间 :对于只设置了用户级线程的系统,调度是以进程为单位进行的。在采用轮转调度算法时,各个进程轮流执行一个时间片,这对诸进程而言似乎是公平的。
参考: