nyoj 164 Game of Connections
Game of Connections
时间限制:1000 ms | 内存限制:65535 KB
难度:3
- 描述
- This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, . . . , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another.
And, no two segments are allowed to intersect.
It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?
- 输入
- Each line of the input file will be a single positive number n, except the last line, which is a number -1.
You may assume that 1 <= n <= 100. - 输出
- For each n, print in a single line the number of ways to connect the 2n numbers into pairs
- 样例输入
-
2 3 -1
- 样例输出
-
2 5
- 来源
- POJ
- 上传者
- iphxer
- 求卡特南数 我直接打表的
- 嘿嘿标程是用java 写的 其实我也想用java来写的 java写大数挺好的
-
View Code
1 2 #include <stdio.h> 3 4 char list[100][100]={ 5 "1", 6 "2", 7 "5", 8 "14", 9 "42", 10 "132", 11 "429", 12 "1430", 13 "4862", 14 "16796", 15 "58786", 16 "208012", 17 "742900", 18 "2674440", 19 "9694845", 20 "35357670", 21 "129644790", 22 "477638700", 23 "1767263190", 24 "6564120420", 25 "24466267020", 26 "91482563640", 27 "343059613650", 28 "1289904147324", 29 "4861946401452", 30 "18367353072152", 31 "69533550916004", 32 "263747951750360", 33 "1002242216651368", 34 "3814986502092304", 35 "14544636039226909", 36 "55534064877048198", 37 "212336130412243110", 38 "812944042149730764", 39 "3116285494907301262", 40 "11959798385860453492", 41 "45950804324621742364", 42 "176733862787006701400", 43 "680425371729975800390", 44 "2622127042276492108820", 45 "10113918591637898134020", 46 "39044429911904443959240", 47 "150853479205085351660700", 48 "583300119592996693088040", 49 "2257117854077248073253720", 50 "8740328711533173390046320", 51 "33868773757191046886429490", 52 "131327898242169365477991900", 53 "509552245179617138054608572", 54 "1978261657756160653623774456", 55 "7684785670514316385230816156", 56 "29869166945772625950142417512", 57 "116157871455782434250553845880", 58 "451959718027953471447609509424", 59 "1759414616608818870992479875972", 60 "6852456927844873497549658464312", 61 "26700952856774851904245220912664", 62 "104088460289122304033498318812080", 63 "405944995127576985730643443367112", 64 "1583850964596120042686772779038896", 65 "6182127958584855650487080847216336", 66 "24139737743045626825711458546273312", 67 "94295850558771979787935384946380125", 68 "368479169875816659479009042713546950", 69 "1440418573150919668872489894243865350", 70 "5632681584560312734993915705849145100", 71 "22033725021956517463358552614056949950", 72 "86218923998960285726185640663701108500", 73 "337485502510215975556783793455058624700", 74 "1321422108420282270489942177190229544600", 75 "5175569924646105559418940193995065716350", 76 "20276890389709399862928998568254641025700", 77 "79463489365077377841208237632349268884500", 78 "311496878311103321137536291518809134027240", 79 "1221395654430378811828760722007962130791020", 80 "4790408930363303911328386208394864461024520", 81 "18793142726809884575211361279087545193250040", 82 "73745243611532458459690151854647329239335600", 83 "289450081175264899454283846029490767264392230", 84 "1136359577947336271931632877004667456667613940", 85 "4462290049988320482463241297506133183499654740", 86 "17526585015616776834735140517915655636396234280", 87 "68854441132780194707888052034668647142985206100", 88 "270557451039395118028642463289168566420671280440", 89 "1063353702922273835973036658043476458723103404520", 90 "4180080073556524734514695828170907458428751314320", 91 "16435314834665426797069144960762886143367590394940", 92 "64633260585762914370496637486146181462681535261000", 93 "254224158304000796523953440778841647086547372026600", 94 "1000134600800354781929399250536541864362461089950800", 95 "3935312233584004685417853572763349509774031680023800", 96 "15487357822491889407128326963778343232013931127835600", 97 "60960876535340415751462563580829648891969728907438000", 98 "239993345518077005168915776623476723006280827488229600", 99 "944973797977428207852605870454939596837230758234904050", 100 "3721443204405954385563870541379246659709506697378694300", 101 "14657929356129575437016877846657032761712954950899755100", 102 "57743358069601357782187700608042856334020731624756611000", 103 "227508830794229349661819540395688853956041682601541047340", 104 "896519947090131496687170070074100632420837521538745909320" 105 }; 106 107 int main(void) 108 { 109 int k; 110 while (scanf("%ld",&k)==1) 111 { 112 if (k==-1) 113 break; 114 printf("%s\n",list[k-1]); 115 } 116 return 0; 117 } 118