摘要:
MindSpore应用目标 以下将展示MindSpore近一年的高阶计划,会根据用户的反馈诉求,持续调整计划的优先级。 总体而言,会努力在以下几个方面不断改进。 1. 提供更多的预置模型支持。 2. 持续补齐API和算子库,改善易用性和编程体验。 3. 提供华为昇腾AI处理器的全面支持,并不断优化性 阅读全文
摘要:
MindSpore图像分类模型支持(Lite) 图像分类介绍 图像分类模型可以预测图片中出现哪些物体,识别出图片中出现物体列表及其概率。 比如下图经过模型推理的分类结果为下表: 类别 概率 plant 0.9359 flower 0.8641 tree 0.8584 houseplant 0.786 阅读全文
摘要:
MindSpore静态图语法支持 概述 在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。 关于Graph模式和计算图,可参考文档:https://www.mindspore.cn/tutorial/training/zh-CN/r 阅读全文
摘要:
MindArmour差分隐私 总体设计 MindArmour的Differential-Privacy模块,实现了差分隐私训练的能力。模型的训练主要由构建训练数据集、计算损失、计算梯度以及更新模型参数等过程组成,目前MindArmour的差分隐私训练主要着力于计算梯度的过程,通过相应的算法对梯度进行 阅读全文
摘要:
MindInsight张量可视设计介绍 特性背景 张量可视,能够帮助用户直观查看训练过程中的Tensor值,既支持以直方图的形式呈现Tensor的变化趋势,也支持查看某次step的具体Tensor值。Tensor包括权重值、梯度值、激活值等。 总体设计 Tensor可视主要是解析由MindSpore 阅读全文
摘要:
MindInsight计算图可视设计 特性背景 计算图可视的功能,主要协助开发者在下面这些场景中使用。 开发者在编写深度学习神经网络的代码时,可以使用计算图的功能查看神经网络中算子的数据流走向,以及模型结构。 计算图还可以方便开发者查看指定节点的输入和输出节点,以及所查找的节点的属性信息。 开发者在 阅读全文
摘要:
MindInsight训练可视整体设计介绍 MindInsight是MindSpore的可视化调试调优组件。通过MindInsight可以完成训练可视、性能调优、精度调优等任务。 训练可视功能主要包括训练看板、模型溯源、数据溯源等功能,训练看板中又包括标量、参数分布图、计算图、数据图、数据抽样、张量 阅读全文
摘要:
MindSpore Lite整体架构介绍 MindSpore Lite框架的总体架构如下所示: 前端(Frontend): 负责模型生成,用户可以通过模型构建接口构建模型,将第三方模型和MindSpore训练的模型转换为MindSpore Lite模型,其中第三方模型包括TensorFlow Lit 阅读全文
摘要:
MindSpore整体架构介绍 MindSpore框架架构总体分为MindSpore前端表示层、MindSpore计算图引擎和MindSpore后端运行时三层。 MindSpore前端表示层(MindExpression,简称ME) 该部分包含Python API、MindSpore IR(Inte 阅读全文
摘要:
MindSpore基本原理 MindSpore介绍 自动微分 自动并行 安装 pip方式安装 源码编译方式安装 Docker镜像 快速入门 文档 MindSpore介绍 MindSpore是一种适用于端边云场景的新型开源深度学习训练/推理框架。 MindSpore提供了友好的设计和高效的执行,旨在提 阅读全文