TVM示例展示 README.md,Makefile,CMakeLists.txt

 TVM示例展示 README.md,Makefile,CMakeLists.txt

  1. TVM/README.md

 

<img src=https://raw.githubusercontent.com/apache/tvm-site/main/images/logo/tvm-logo-small.png width=128/> Open Deep Learning Compiler Stack

==============================================

[Documentation](https://tvm.apache.org/docs) |

[Contributors](CONTRIBUTORS.md) |

[Community](https://tvm.apache.org/community) |

[Release Notes](NEWS.md)  

 

[![Build Status](https://ci.tlcpack.ai/buildStatus/icon?job=tvm/main)](https://ci.tlcpack.ai/job/tvm/job/main/)

[![WinMacBuild](https://github.com/apache/tvm/workflows/WinMacBuild/badge.svg)](https://github.com/apache/tvm/actions?query=workflow%3AWinMacBuild)

 

Apache TVM is a compiler stack for deep learning systems. It is designed to close the gap between the

productivity-focused deep learning frameworks, and the performance- and efficiency-focused hardware backends.

TVM works with deep learning frameworks to provide end to end compilation to different backends.

 

License

-------

TVM is licensed under the [Apache-2.0](LICENSE) license.

   

Getting Started

---------------

Check out the [TVM Documentation](https://tvm.apache.org/docs/) site for installation instructions, tutorials, examples, and more.

The [Getting Started with TVM](https://tvm.apache.org/docs/tutorials/get_started/introduction.html) tutorial is a great

place to start.

 

Contribute to TVM

-----------------

TVM adopts apache committer model, we aim to create an open source project that is maintained and owned by the community.

Check out the [Contributor Guide](https://tvm.apache.org/docs/contribute/).

 

Acknowledgement

---------------

We learned a lot from the following projects when building TVM.

- [Halide](https://github.com/halide/Halide): Part of TVM's TIR and arithmetic simplification module

  originates from Halide. We also learned and adapted some part of lowering pipeline from Halide.

- [Loopy](https://github.com/inducer/loopy): use of integer set analysis and its loop transformation primitives.

- [Theano](https://github.com/Theano/Theano): the design inspiration of symbolic scan operator for recurrence.

 

 2. TVM/MakeFile

 

  

 

 3. TVM/CMakeLists.txt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

 

 参考链接:

https://github.com/apache/tvm/

 

posted @   吴建明wujianming  阅读(107)  评论(0编辑  收藏  举报
编辑推荐:
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
历史上的今天:
2020-11-21 使用NVIDIA GRID vPC支持视频会议和算力工具
2020-11-21 使用NVIDIA A100 TF32获得即时加速
2020-11-21 使用PCAST检测散度以比较GPU和CPU结果
2020-11-21 用NVIDIA NsightcComputeRoofline分析加速高性能HPC的应用
点击右上角即可分享
微信分享提示