TVM性能评估分析(七)

TVM性能评估分析(七)

 

 

 Figure 1.  Performance Improvement

 

 

 Figure 2.  Depthwise convolution

 

 

Figure 3.  Data Fusion

 

 

 Figure 4.  Data Fusion(2)

 

 

 Figure 5.  Shared memory can be seen as cache in GPU. It is on-chip and much faster than global memory.

 

 

 Figure 6.   Shared memory banks are organized such that successive addresses are assigned to successive banks. 

 

 

 Figure 7.  Consecutive threads access consecutive memory addresses, thus avoiding bank conflicts

 

 

 Figure 8.  Computational Graph

 

 

 Figure 9.  Sublinear memory optimization functionality that allows user to train 1000 layers of ImageNet ResNet on a single GPU.

 

 

 Figure 10.  We build a low level representation which is based on index formula, with additional support for recurrence computation.

 

 

 Figure 11.  The algorithms described in TVM are then processed in a scheduling phase to apply transformations that are tailored to the target hardware back-end.

 

 

 Figure 12.  Multi-language and Platform Support

 

 

 Figure 13.  Remote Deployment and Execution

 

 

 Table 1.  Raspberry Pi

 

 

 Figure 14.  GPU Results

 

posted @   吴建明wujianming  阅读(152)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2020-05-30 TensorFlow基础剖析
2020-05-30 Caffe框架GPU与MLU计算结果不一致请问如何调试?
2020-05-30 YOLOv5目标检测源码重磅发布了!
2020-05-30 NVIDIA深度学习Tensor Core性能解析(下)
2020-05-30 NVIDIA深度学习Tensor Core性能解析(上)
2020-05-30 Tensor Core技术解析(下)
2020-05-30 Tensor Core技术解析(上)
点击右上角即可分享
微信分享提示