TVM性能评估分析(七)
TVM性能评估分析(七)
Figure 1. Performance Improvement
Figure 2. Depthwise convolution
Figure 3. Data Fusion
Figure 4. Data Fusion(2)
Figure 5. Shared memory can be seen as cache in GPU. It is on-chip and much faster than global memory.
Figure 6. Shared memory banks are organized such that successive addresses are assigned to successive banks.
Figure 7. Consecutive threads access consecutive memory addresses, thus avoiding bank conflicts
Figure 8. Computational Graph
Figure 9. Sublinear memory optimization functionality that allows user to train 1000 layers of ImageNet ResNet on a single GPU.
Figure 10. We build a low level representation which is based on index formula, with additional support for recurrence computation.
Figure 11. The algorithms described in TVM are then processed in a scheduling phase to apply transformations that are tailored to the target hardware back-end.
Figure 12. Multi-language and Platform Support
Figure 13. Remote Deployment and Execution
Table 1. Raspberry Pi
Figure 14. GPU Results
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2020-05-30 TensorFlow基础剖析
2020-05-30 Caffe框架GPU与MLU计算结果不一致请问如何调试?
2020-05-30 YOLOv5目标检测源码重磅发布了!
2020-05-30 NVIDIA深度学习Tensor Core性能解析(下)
2020-05-30 NVIDIA深度学习Tensor Core性能解析(上)
2020-05-30 Tensor Core技术解析(下)
2020-05-30 Tensor Core技术解析(上)