TVM性能评估分析(三)

TVM性能评估分析(三)

 

 

 Figure 1. TVM’s WebGPU backend close to native GPU performance when deploying models to the web.

 

 

 Figure 2.  WebGPU is to write shaders for primitive operators in deep neural networks

 

 

 Figure 3.  Build a WebGPU runtime inside TVM’s JS runtime

 

 

 Figure 4. Comparing the execution of a full computational graph via TVM’s WebGPU backend and native targets

 

 

 Figure 5. 2D convolution with data layout in NCHW4c and weight layout in OIHW4o4i. Left: The input tensor in NCHW4c layout. One moving filter of the kernel is colored in blue. One element of the input and kernel is colored in grey. Mid: The packed input and kernel in the grey block. Right: The output in NCHW4c layout. Inside the one element depicted, there are four packed elements in channel sub-dimension.

 

 

 Figure 6. Workflow of running quantized models

 

 

 Figure 7.  A full deep learning compiler stack to support machine learning workloads for diverse hardware backends.

 

 

 Figure 8. Golang Interface over TVM Runtime

 

 

 Figure 9.  Import, Compile, Integrate and Deploy

posted @   吴建明wujianming  阅读(92)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2020-05-30 TensorFlow基础剖析
2020-05-30 Caffe框架GPU与MLU计算结果不一致请问如何调试?
2020-05-30 YOLOv5目标检测源码重磅发布了!
2020-05-30 NVIDIA深度学习Tensor Core性能解析(下)
2020-05-30 NVIDIA深度学习Tensor Core性能解析(上)
2020-05-30 Tensor Core技术解析(下)
2020-05-30 Tensor Core技术解析(上)
点击右上角即可分享
微信分享提示