PyTorch Data Parrallel数据并行
PyTorch Data Parrallel数据并行
- 可选择:数据并行处理
- 本文将学习如何用 DataParallel 来使用多 GPU。 通过 PyTorch 使用多个 GPU 非常简单。可以将模型放在一个 GPU:
- device = torch.device("cuda:0")
- model.to(device)
- 可以复制所有的张量到 GPU:
- mytensor = my_tensor.to(device)
- 调用 my_tensor.to(device) 返回一个 my_tensor, 新的复制在GPU上,而不是重写 my_tensor。需要分配一个新的张量并且在 GPU 上使用这个张量。
- 在多 GPU 中执行前馈,后继操作是非常自然的。尽管如此,PyTorch 默认只会使用一个 GPU。通过使用 DataParallel 让模型并行运行,可以很容易的在多 GPU 上运行操作。
- model = nn.DataParallel(model)
- 这是整个教程的核心,接下来将会详细讲解。 引用和参数
- 引入 PyTorch 模块和定义参数
- import torch
- import torch.nn as nn
- from torch.utils.data import Dataset, DataLoader
- 参数
- input_size = 5
- output_size = 2
- batch_size = 30
- data_size = 100
- 设备
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- 实验(玩具)数据
- 生成一个玩具数据。只需要实现 getitem.
- classRandomDataset(Dataset):
- def__init__(self, size, length):
- self.len = length
- self.data = torch.randn(length, size)
- def__getitem__(self, index):
- return self.data[index]
- def__len__(self):
- return self.len
- rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),batch_size=batch_size, shuffle=True)
- 简单模型
- 做一个小 demo,模型只是获得一个输入,执行一个线性操作,然后给一个输出。可以使用 DataParallel 在任何模型(CNN, RNN, Capsule Net 等等.)
- 放置了一个输出声明在模型中,检测输出和输入张量的大小。在 batch rank 0 中的输出。
- classModel(nn.Module):
- # Our model
- def__init__(self, input_size, output_size):
- super(Model, self).__init__()
- self.fc = nn.Linear(input_size, output_size)
- defforward(self, input):
- output = self.fc(input)
- print("\tIn Model: input size", input.size(),
- "output size", output.size())
- return output
- 创建模型并且数据并行处理
- 这是本文的核心。首先需要一个模型的实例,然后验证是否有多个 GPU。如果有多个 GPU,可以用 nn.DataParallel 来包裹模型。然后使用 model.to(device) 把模型放到多 GPU 中。
- model = Model(input_size, output_size)
- if torch.cuda.device_count() > 1:
- print("Let's use", torch.cuda.device_count(), "GPUs!")
- # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
- model = nn.DataParallel(model)
- model.to(device)
- 输出:
- Let's use 2 GPUs!
- 运行模型: 现在可以看到输入和输出张量的大小了。
- for data in rand_loader:
- input = data.to(device)
- output = model(input)
- print("Outside: input size", input.size(),
- "output_size", output.size())
- 输出:
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
- In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
- Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
- 结果:
- 如果没有 GPU 或者只有一个 GPU,当获取 30 个输入和 30 个输出,模型将期望获得 30 个输入和 30 个输出。但是如果有多个 GPU ,会获得这样的结果。
- 多 GPU
- 如果有 2 个GPU,会看到:
- # on 2 GPUs
- Let's use 2 GPUs!
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
- In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
- Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
- 如果有 3个GPU,会看到:
- Let's use 3 GPUs!
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
- 如果有 8个GPU,会看到:
- Let's use 8 GPUs!
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
- Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
- 总结
- 数据并行自动拆分了数据并,将任务单发送到多个 GPU 上。当每一个模型都完成任务之后,DataParallel 收集并且合并这些结果,然后再返回。
人工智能芯片与自动驾驶