ARM CPU自动调度神经网络

ARM CPU自动调度神经网络

对特定设备和工作负载进行自动调度,对于获得最佳性能至关重要。通过RPC使用自动调度器为ARM CPU调度整个神经网络。

为了自动调度神经网络,将网络划分为小的子图,进行独立调度。每个子图被视为一个搜索任务。任务调度程序对时间进行分片,为这些任务动态分配时间资源。任务调度程序预测每个任务对端到端执行时间的影响,确定最大程度地减少执行时间的任务的优先级。

对于每个子图,使用compute声明tvm/python/topi,获取张量表达式形式的计算DAG。使用自动调度器来构造此DAG的搜索空间,搜索良好的调度(低级优化)。

与手动模板定义搜索空间的基于模板的autotvm不同,自动调度程序不需要任何调度模板。换句话说,自动调度程序仅在其中使用计算声明tvm/python/topi,而不使用现有的调度模板。

本文无法在Windows或最新版本的macOS上运行。要使其运行,需要将本文的内容包装在一个if __name__ == "__main__":块中。

import numpy as np

 

import tvm

from tvm import relay, auto_scheduler

import tvm.relay.testing

from tvm.contrib import graph_runtime

from tvm.contrib.utils import tempdir

定义网络

首先,需要使用Relay中继前端API定义网络。从加载一些预定义的网络tvm.relay.testing。还从MXNet,ONNX,PyTorch和TensorFlow加载模型。

对于卷积神经网络,尽管自动调度程序在任何布局下正常工作,使用NHWC布局通常实现最佳性能。使用自动调度程序对NHWC布局实施了更多优化。建议将模型转换为NHWC布局以使用自动调度程序。使用ConvertLayout传递在TVM中进行布局转换。

def get_network(name, batch_size, layout="NHWC", dtype="float32"):

    """Get the symbol definition and random weight of a network"""

 

    # auto-scheduler prefers NHWC layout

    if layout == "NHWC":

        image_shape = (224, 224, 3)

    elif layout == "NCHW":

        image_shape = (3, 224, 224)

    else:

        raise ValueError("Invalid layout: " + layout)

 

    input_shape = (batch_size,) + image_shape

    output_shape = (batch_size, 1000)

 

    if name.startswith("resnet-"):

        n_layer = int(name.split("-")[1])

        mod, params = relay.testing.resnet.get_workload(

            num_layers=n_layer,

            batch_size=batch_size,

            layout=layout,

            dtype=dtype,

            image_shape=image_shape,

        )

    elif name.startswith("resnet3d-"):

        n_layer = int(name.split("-")[1])

        mod, params = relay.testing.resnet.get_workload(

            num_layers=n_layer,

            batch_size=batch_size,

            layout=layout,

            dtype=dtype,

            image_shape=image_shape,

        )

    elif name == "mobilenet":

        mod, params = relay.testing.mobilenet.get_workload(

            batch_size=batch_size, layout=layout, dtype=dtype, image_shape=image_shape

        )

    elif name == "squeezenet_v1.1":

        assert layout == "NCHW", "squeezenet_v1.1 only supports NCHW layout"

        mod, params = relay.testing.squeezenet.get_workload(

            version="1.1",

            batch_size=batch_size,

            dtype=dtype,

            image_shape=image_shape,

        )

    elif name == "inception_v3":

        input_shape = (batch_size, 3, 299, 299) if layout == "NCHW" else (batch_size, 299, 299, 3)

        mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)

    elif name == "mxnet":

        # an example for mxnet model

        from mxnet.gluon.model_zoo.vision import get_model

 

        assert layout == "NCHW"

 

        block = get_model("resnet50_v1", pretrained=True)

        mod, params = relay.frontend.from_mxnet(block, shape={"data": input_shape}, dtype=dtype)

        net = mod["main"]

        net = relay.Function(

            net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs

        )

        mod = tvm.IRModule.from_expr(net)

 

    return mod, params, input_shape, output_shape

启动RPC跟踪器

TVM使用RPC会话与ARM板进行通信。在调度期间,调谐器会将生成的代码发送到电路板上,测量电路板上的代码速度。

为了扩大调度范围,TVM使用RPC Tracker来管理分布式设备。RPC跟踪器是一个集中式控制器节点。将所有设备注册到跟踪器。例如,如果有10部电话,全部注册到跟踪器,并行运行10次测量,从而加快了调谐过程。

要启动RPC跟踪器,在主机上运行此命令。在整个调度过程中都需要使用跟踪器,因此需要为此命令打开一个新终端:

python -m tvm.exec.rpc_tracker --host=0.0.0.0 --port=9190

预期的输出是

INFO:RPCTracker:bind to 0.0.0.0:9190

将设备注册到RPC跟踪器

现在,将设备注册到跟踪器。第一步是为ARM设备构建TVM运行时。

  • 对于Linux:遵循本节在设备上构建TVM运行时,以在设备上构建TVM运行时。然后通过以下方式将设备注册到跟踪器
  • python -m tvm.exec.rpc_server --tracker=[HOST_IP]:9190 --key=rasp4b-64

(用[HOST_IP]主机的IP地址代替)

  • 对于Android:在Android设备上安装TVM RPC APK。确保通过android rpc测试。已经注册了设备。在调度过程中,必须转到开发人员选项,启用“更改时保持屏幕唤醒”并为手机充电以使其稳定。

注册设备后,通过查询rpc_tracker进行确认

python -m tvm.exec.query_rpc_tracker --host=0.0.0.0 --port=9190

例如,如果有2个Huawei mate10 pro,11个具有64位操作系统的Raspberry Pi 4B和2个rk3399,则输出是

Queue Status

----------------------------------

key          total  free  pending

----------------------------------

mate10pro    2      2     0

rk3399       2      2     0

rasp4b-64    11     11    0

----------------------------------

将多个设备注册到跟踪器,以加快调谐过程中的测量速度。

设置调度选项

调度之前,应该应用一些配置。以带有64位操作系统(Ubuntu 20.04)的Raspberry Pi 4b 4GB主板为例。在设置中,应该相应地修改目标和device_key。如果使用的是Android手机,use_ndk设置为True。

#### DEVICE CONFIG ####

 

# Replace "aarch64-linux-gnu" with the correct target of your board.

# This target is used for cross compilation. You can query it by :code:`gcc -v` on your device.

# FIXME(tmoreau89, merrymercy): We leave '-device=arm_cpu' out of the target string

#                               because we're sharing x86 op strategy.

target = tvm.target.Target("llvm -mtriple=aarch64-linux-gnu -mattr=+neon")

 

# Also replace this with the device key in your tracker

device_key = "rasp4b-64"

 

# Set this to True if you use ndk tools for cross compiling

# And also set the environment variable below to point to the cross compiler

use_ndk = False

# os.environ["TVM_NDK_CC"] = "/usr/bin/aarch64-linux-gnu-g++"

 

#### TUNING OPTION ####

network = "mobilenet"

batch_size = 1

layout = "NHWC"

dtype = "float32"

log_file = "%s-%s-B%d-%s.json" % (network, layout, batch_size, target.kind.name)

提取搜索任务

接下来,从网络中提取搜索任务及其权重。任务的权重是该任务的子图在整个网络中的出现次数。通过使用权重,将网络的端到端延迟近似为,sum(latency[t] * weight[t])其中是任务的延迟,latency[t]weight[t]是任务的权重。任务调度程序将仅优化此目标。

# Extract tasks from the network

print("Extract tasks...")

mod, params, input_shape, output_shape = get_network(network, batch_size, layout, dtype=dtype)

tasks, task_weights = auto_scheduler.extract_tasks(mod["main"], params, target)

 

for idx, task in enumerate(tasks):

    print("========== Task %d  (workload key: %s) ==========" % (idx, task.workload_key))

    print(task.compute_dag)

出去:

Extract tasks...

========== Task 0  (workload key: ["d7b65649a4dd54becea0a52aabbc5af5", 1, 1000, 1, 1000]) ==========

placeholder = PLACEHOLDER [1, 1000]

T_softmax_maxelem(i0) max= placeholder[i0, k]

T_softmax_exp(i0, i1) = tir.exp((placeholder[i0, i1] - T_softmax_maxelem[i0]))

T_softmax_expsum(i0) += T_softmax_exp[i0, k]

T_softmax_norm(i0, i1) = (T_softmax_exp[i0, i1]/T_softmax_expsum[i0])

 

========== Task 1  (workload key: ["9847f8cc0b305137f49f2c5c0c8ab25d", 1, 1024, 1000, 1024, 1000, 1, 1000]) ==========

placeholder = PLACEHOLDER [1, 1024]

placeholder = PLACEHOLDER [1000, 1024]

T_dense(i, j) += (placeholder[i, k]*placeholder[j, k])

placeholder = PLACEHOLDER [1000]

T_add(ax0, ax1) = (T_dense[ax0, ax1] + placeholder[ax1])

 

========== Task 2  (workload key: ["69115f188984ae34ede37c3b8ca40b43", 1, 7, 7, 1024, 1, 1, 1, 1024]) ==========

placeholder = PLACEHOLDER [1, 7, 7, 1024]

tensor(ax0, ax1, ax2, ax3) += placeholder[ax0, ((ax1*7) + rv0), ((ax2*7) + rv1), ax3]

tensor(ax0, ax1, ax2, ax3) = (tensor[ax0, ax1, ax2, ax3]/(float32((select((bool)1, ((ax1 + 1)*7), (((ax1 + 1)*7) + 1)) - (ax1*7)))*float32((select((bool)1, ((ax2 + 1)*7), (((ax2 + 1)*7) + 1)) - (ax2*7)))))

 

========== Task 3  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 7, 7, 1024, 1, 1, 1024, 1024, 1, 1, 1, 1024, 1, 7, 7, 1024]) ==========

placeholder = PLACEHOLDER [1, 7, 7, 1024]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 1024, 1024]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 1024]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 4  (workload key: ["06fce76bd84cb904eee50b905ca9449a", 1, 7, 7, 1024, 3, 3, 1024, 1, 1, 1, 1, 1024, 1, 7, 7, 1024]) ==========

placeholder = PLACEHOLDER [1, 7, 7, 1024]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 8)) && (i2 >= 1)) && (i2 < 8)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 1024, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 1024]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 5  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 7, 7, 512, 1, 1, 512, 1024, 1, 1, 1, 1024, 1, 7, 7, 1024]) ==========

placeholder = PLACEHOLDER [1, 7, 7, 512]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 512, 1024]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 1024]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 6  (workload key: ["c87ba68bc180312f5716af09a77ca15b", 1, 14, 14, 512, 3, 3, 512, 1, 1, 1, 1, 512, 1, 7, 7, 512]) ==========

placeholder = PLACEHOLDER [1, 14, 14, 512]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 15)) && (i2 >= 1)) && (i2 < 15)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 512, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, ((i*2) + di), ((j*2) + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 512]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 7  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 14, 14, 512, 1, 1, 512, 512, 1, 1, 1, 512, 1, 14, 14, 512]) ==========

placeholder = PLACEHOLDER [1, 14, 14, 512]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 512, 512]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 512]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 8  (workload key: ["06fce76bd84cb904eee50b905ca9449a", 1, 14, 14, 512, 3, 3, 512, 1, 1, 1, 1, 512, 1, 14, 14, 512]) ==========

placeholder = PLACEHOLDER [1, 14, 14, 512]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 15)) && (i2 >= 1)) && (i2 < 15)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 512, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 512]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 9  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 14, 14, 256, 1, 1, 256, 512, 1, 1, 1, 512, 1, 14, 14, 512]) ==========

placeholder = PLACEHOLDER [1, 14, 14, 256]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 256, 512]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 512]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 10  (workload key: ["c87ba68bc180312f5716af09a77ca15b", 1, 28, 28, 256, 3, 3, 256, 1, 1, 1, 1, 256, 1, 14, 14, 256]) ==========

placeholder = PLACEHOLDER [1, 28, 28, 256]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 29)) && (i2 >= 1)) && (i2 < 29)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 256, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, ((i*2) + di), ((j*2) + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 256]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 11  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 28, 28, 256, 1, 1, 256, 256, 1, 1, 1, 256, 1, 28, 28, 256]) ==========

placeholder = PLACEHOLDER [1, 28, 28, 256]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 256, 256]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 256]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 12  (workload key: ["06fce76bd84cb904eee50b905ca9449a", 1, 28, 28, 256, 3, 3, 256, 1, 1, 1, 1, 256, 1, 28, 28, 256]) ==========

placeholder = PLACEHOLDER [1, 28, 28, 256]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 29)) && (i2 >= 1)) && (i2 < 29)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 256, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 256]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 13  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 28, 28, 128, 1, 1, 128, 256, 1, 1, 1, 256, 1, 28, 28, 256]) ==========

placeholder = PLACEHOLDER [1, 28, 28, 128]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 128, 256]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 256]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 14  (workload key: ["c87ba68bc180312f5716af09a77ca15b", 1, 56, 56, 128, 3, 3, 128, 1, 1, 1, 1, 128, 1, 28, 28, 128]) ==========

placeholder = PLACEHOLDER [1, 56, 56, 128]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 57)) && (i2 >= 1)) && (i2 < 57)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 128, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, ((i*2) + di), ((j*2) + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 128]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 15  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 56, 56, 128, 1, 1, 128, 128, 1, 1, 1, 128, 1, 56, 56, 128]) ==========

placeholder = PLACEHOLDER [1, 56, 56, 128]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 128, 128]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 128]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 16  (workload key: ["06fce76bd84cb904eee50b905ca9449a", 1, 56, 56, 128, 3, 3, 128, 1, 1, 1, 1, 128, 1, 56, 56, 128]) ==========

placeholder = PLACEHOLDER [1, 56, 56, 128]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 57)) && (i2 >= 1)) && (i2 < 57)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 128, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 128]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 17  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 56, 56, 64, 1, 1, 64, 128, 1, 1, 1, 128, 1, 56, 56, 128]) ==========

placeholder = PLACEHOLDER [1, 56, 56, 64]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 64, 128]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 128]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 18  (workload key: ["c87ba68bc180312f5716af09a77ca15b", 1, 112, 112, 64, 3, 3, 64, 1, 1, 1, 1, 64, 1, 56, 56, 64]) ==========

placeholder = PLACEHOLDER [1, 112, 112, 64]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 113)) && (i2 >= 1)) && (i2 < 113)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 64, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, ((i*2) + di), ((j*2) + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 64]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 19  (workload key: ["6b7583cf23c7c37d3212cad9d06e58c1", 1, 112, 112, 32, 1, 1, 32, 64, 1, 1, 1, 64, 1, 112, 112, 64]) ==========

placeholder = PLACEHOLDER [1, 112, 112, 32]

PaddedInput(i0, i1, i2, i3) = placeholder[i0, i1, i2, i3]

placeholder = PLACEHOLDER [1, 1, 32, 64]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, (yy + ry), (xx + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 1, 1, 64]

T_add(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 20  (workload key: ["06fce76bd84cb904eee50b905ca9449a", 1, 112, 112, 32, 3, 3, 32, 1, 1, 1, 1, 32, 1, 112, 112, 32]) ==========

placeholder = PLACEHOLDER [1, 112, 112, 32]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 113)) && (i2 >= 1)) && (i2 < 113)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 32, 1]

DepthwiseConv2d(b, i, j, c) += (PaddedInput[b, (i + di), (j + dj), c]*placeholder[di, dj, c, 0])

placeholder = PLACEHOLDER [1, 1, 1, 32]

T_add(ax0, ax1, ax2, ax3) = (DepthwiseConv2d[ax0, ax1, ax2, ax3] + placeholder[ax0, 0, 0, ax3])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

 

========== Task 21  (workload key: ["98418eda02701ddd175ad50e364a0638", 1, 224, 224, 3, 3, 3, 3, 32, 1, 112, 1, 1, 1, 112, 1, 1, 1, 112, 112, 32]) ==========

placeholder = PLACEHOLDER [1, 224, 224, 3]

PaddedInput(i0, i1, i2, i3) = tir.if_then_else(((((i1 >= 1) && (i1 < 225)) && (i2 >= 1)) && (i2 < 225)), placeholder[i0, (i1 - 1), (i2 - 1), i3], 0f)

placeholder = PLACEHOLDER [3, 3, 3, 32]

Conv2dOutput(nn, yy, xx, ff) += (PaddedInput[nn, ((yy*2) + ry), ((xx*2) + rx), rc]*placeholder[ry, rx, rc, ff])

placeholder = PLACEHOLDER [1, 112, 1, 1]

T_multiply(ax0, ax1, ax2, ax3) = (Conv2dOutput[ax0, ax1, ax2, ax3]*placeholder[ax0, ax1, 0, 0])

placeholder = PLACEHOLDER [1, 112, 1, 1]

T_add(ax0, ax1, ax2, ax3) = (T_multiply[ax0, ax1, ax2, ax3] + placeholder[ax0, ax1, 0, 0])

T_relu(ax0, ax1, ax2, ax3) = max(T_add[ax0, ax1, ax2, ax3], 0f)

调优与评估

设置一些选项来优化和启动搜索任务

  • num_measure_trials是在调度期间使用的测量试验的次数。将其设置为较小的数字(例如200)以进行快速演示。实际上,建议将其设置为800 * len(tasks),通常足以使搜索收敛。例如,resnet-50中有29个任务,因此将其设置为20000。根据时间预算调度。
  • 此外,还用RecordToFile将测量记录转储到日志文件中,些测量记录可用于最好地查询历史记录,恢复搜索以及以后进行更多分析。
  • 有关更多参数auto_scheduler.TuningOptions, 参见auto_scheduler.LocalRunner

自动调度后,使用发现的最佳调度来编译网络。在自动调度期间,所有测量记录都将转储到日志文件中,因此读取日志文件并加载最佳调度。

def tune_and_evaluate():

    print("Begin tuning...")

    tuner = auto_scheduler.TaskScheduler(tasks, task_weights)

    tune_option = auto_scheduler.TuningOptions(

        num_measure_trials=200,  # change this to 20000 to achieve the best performance

        runner=auto_scheduler.RPCRunner(

            device_key,

            host="0.0.0.0",

            port=9191,

            timeout=30,

            repeat=1,

            min_repeat_ms=200,

            enable_cpu_cache_flush=True,

        ),

        measure_callbacks=[auto_scheduler.RecordToFile(log_file)],

    )

 

    tuner.tune(tune_option)

 

    # Compile with the history best

    print("Compile...")

    with auto_scheduler.ApplyHistoryBest(log_file):

        with tvm.transform.PassContext(

            opt_level=3, config={"relay.backend.use_auto_scheduler": True}

        ):

            lib = relay.build(mod, target=target, params=params)

 

    # Export library

    tmp = tempdir()

    if use_ndk:

        from tvm.contrib import ndk

 

        filename = "net.so"

        lib.export_library(tmp.relpath(filename), ndk.create_shared)

    else:

        filename = "net.tar"

        lib.export_library(tmp.relpath(filename))

 

    # Upload module to device

    print("Upload...")

    remote = auto_scheduler.utils.request_remote(device_key, "0.0.0.0", 9191, timeout=10000)

    remote.upload(tmp.relpath(filename))

    rlib = remote.load_module(filename)

 

    # Create graph runtime

    ctx = remote.cpu()

    module = graph_runtime.GraphModule(rlib["default"](ctx))

    data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))

    module.set_input("data", data_tvm)

 

    # Evaluate

    print("Evaluate inference time cost...")

    ftimer = module.module.time_evaluator("run", ctx, repeat=3, min_repeat_ms=500)

    prof_res = np.array(ftimer().results) * 1e3  # convert to millisecond

    print(

        "Mean inference time (std dev): %.2f ms (%.2f ms)" % (np.mean(prof_res), np.std(prof_res))

    )

 

 

# We do not run the tuning in our webpage server since the server doesn't have a Raspberry Pi,

# or device tracker running.

# Uncomment the following line to run it by yourself.

 

# tune_and_evaluate()

笔记

调度期间解释打印的信息

在调度期间,控制台上会打印很多信息。用于调试目的。最重要的信息是任务调度程序的输出。下表是示例输出。

----------------------------------------------------------------------

------------------------------  [ Task Scheduler ]

----------------------------------------------------------------------

|  ID  | Latency (ms) | Speed (GFLOPS) | Trials |

-------------------------------------------------

|    0 |        0.013 |           0.31 |     64 |

|    1 |        0.845 |           2.43 |    448 |

|    2 |        0.046 |          -0.00 |     64 |

|    3 |        4.194 |          24.53 |   2112 |

|    4 |        0.109 |           9.21 |     64 |

|    5 |        1.759 |          29.27 |    896 |

|    6 |        0.083 |           6.01 |     64 |

|    7 |        3.084 |          33.38 |   7680 |

|    8 |        0.136 |          14.78 |    384 |

|    9 |        1.349 |          38.23 |    768 |

|   10 |        0.133 |           7.55 |    128 |

|   11 |        2.747 |          37.56 |   1536 |

|   12 |        0.338 |          11.87 |    192 |

|   13 |        1.295 |          40.00 |    704 |

|   14 |        0.482 |           4.16 |    256 |

|   15 |        2.686 |          38.56 |   1344 |

|   16 |        0.884 |           9.08 |    448 |

|   17 |        1.332 |          39.18 |    704 |

|   18 |        1.045 |           3.84 |    576 |

|   19 |        1.391 |          38.09 |    704 |

|   20 |        0.777 |          10.34 |    448 |

|   21 |        0.739 |          30.97 |    448 |

-------------------------------------------------

 Estimated total latency: 38.347 ms      Trials: 19992   Used time : 19260 s     Next ID: 3

下表列出了所有任务的延迟和(估计)速度。列出了所有任务的测量试验分配。最后一行显示这些任务的总加权延迟,粗略估计网络的端到端执行时间。最后一行还显示测量试验的总数,自动调度所花费的总时间,以及要调度的下一个任务的ID。

将出现一些“ dmlc :: Error”错误,因为自动调度程序将尝试一些无效的调度。如果继续进行调度,则放心地忽略,因为这些错误与主要过程是隔离的。

笔记

提前终止调度

通过强制终止此过程来提前终止调度。只要在日志文件中为每个任务至少获得一个有效的调度,就应该能够进行编译(下面的部分)。

其他技巧

  1. 在调度过程中,自动调度器需要编译许多程序并从中提取功能。该部分占用大量CPU,建议使用具有多个内核的高性能CPU,以加快搜索速度。
  2.  用来提取大型日志文件,而仅保存最有用的记录。python3 -m tvm.auto_scheduler.measure_record --mode distill -i log.json
  3. 从上一个日志文件继续搜索。load_log_file在function中创建任务调度程序时,只需添加一个新参数run_tuning。

 tuner = auto_scheduler.TaskScheduler(tasks, task_weights, load_log_file=log_file)

  1. 如果有多个目标CPU,则全部用于测量以并行化测量。检查本节 以了解如何使用RPC跟踪器和RPC服务器。要在自动调度使用RPC跟踪, 用auto_scheduler.RPCRunner更换转轮TuningOptions。
posted @ 2021-03-27 05:49  吴建明wujianming  阅读(311)  评论(0编辑  收藏  举报