Octave Convolution卷积

Octave Convolution卷积

MXNet implementation 实现for:

Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

ImageNet

Ablation

  • Loss: Softmax
  • Learning rate: Cosine (warm-up: 5 epochs, lr: 0.4)
  • MXNet API: Symbol API

https://github.com/facebookresearch/OctConv

 

 

 Note:

  • Top-1 / Top-5, single center crop accuracy is shown in the table. (testing script)
  • All residual networks in ablation study adopt pre-actice version for convenience.

笔记:

  • 表中显示了Top-1 / Top-5,单中心crop精度。(测试脚本
  • 为了方便起见,消融研究中的所有残留网络均采用了预训练版本

Others

  • Learning rate: Cosine (warm-up: 5 epochs, lr: 0.4)
  • MXNet API: Gluon API

 

Citation

@article{chen2019drop,

  title={Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution},

  author={Chen, Yunpeng and Fan, Haoqi and Xu, Bing and Yan, Zhicheng and Kalantidis, Yannis and Rohrbach, Marcus and Yan, Shuicheng and Feng, Jiashi},

  journal={Proceedings of the IEEE International Conference on Computer Vision},

  year={2019}

}

Third-party Implementations

 

Reference

[1] He K, et al "Identity Mappings in Deep Residual Networks".

[2] Christian S, et al "Rethinking the Inception Architecture for Computer Vision"

[3] Zhang H, et al. "mixup: Beyond empirical risk minimization.".

License

The code and the models are MIT licensed, as found in the LICENSE file.

 

posted @   吴建明wujianming  阅读(122)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2020-03-15 ADAS感知算法观察
2020-03-15 CVPR2020最新论文扫描盘点(下)
2020-03-15 CVPR2020最新论文扫描盘点(上)
点击右上角即可分享
微信分享提示