TVM交叉编译和远程RPC
TVM交叉编译和远程RPC
本文介绍了TVM中使用RPC的交叉编译和远程设备执行。
使用交叉编译和RPC,可以在本地计算机上编译程序,然后在远程设备上运行它。当远程设备资源受到限制时(如Raspberry Pi和移动平台),此功能很有用。本文将使用Raspberry Pi作为CPU示例,并使用Firefly-RK3399作为OpenCL示例。
在设备上构建TVM运行时
第一步是在远程设备上构建TVM运行时。
本文所有指令都应在目标设备(例如Raspberry Pi)上执行。假设目标正在运行Linux。
由于在本地计算机上进行编译,因此远程设备仅用于运行生成的代码。只需要在远程设备上构建TVM运行时。
git clone --recursive https://github.com/apache/tvm tvm
cd tvm
make runtime -j2
成功构建运行时后,需要在~/.bashrc文件中设置环境变量。可以~/.bashrc 使用进行编辑并添加以下行(假设TVM目录位于):vi
~/.bashrc~/tvm
export PYTHONPATH=$PYTHONPATH:~/tvm/python
要更新环境变量,执行。source
~/.bashrc
在设备上设置RPC服务器
要启动RPC服务器,在远程设备上运行以下命令(在本示例中为Raspberry Pi)。
python -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090
如果看到下面的行,则表明RPC服务器已在设备上成功启动。
INFO:root:RPCServer: bind to 0.0.0.0:9090
在本地计算机上声明并交叉编译内核
现在,返回安装了完整TVM(带有LLVM)的本地计算机。
将在本地计算机上声明一个简单的内核:
import numpy as np
import tvm
from tvm import te
from tvm import rpc
from tvm.contrib import utils
n = tvm.runtime.convert(1024)
A = te.placeholder((n,), name="A")
B = te.compute((n,), lambda i: A[i] + 1.0, name="B")
s = te.create_schedule(B.op)
然后交叉编译内核。对于Raspberry Pi 3B,目标应该是'llvm -mtriple = armv7l-linux-gnueabihf',在这里使用'llvm'来使本文可在网页构建服务器上运行。参见以下块中的详细说明。
local_demo = True
if local_demo:
target = "llvm"
else:
target = "llvm -mtriple=armv7l-linux-gnueabihf"
func = tvm.build(s, [A, B], target=target, name="add_one")
# save the lib at a local temp folder
temp = utils.tempdir()
path = temp.relpath("lib.tar")
func.export_library(path)
Readme
要运行这个教程与真正的远程设备,更改local_demo 为False,并取代target在build与三联供设备适当的目标。目标三元组对于不同的设备可能有所不同。例如,它适用 于Raspberry Pi 3B和 RK3399。'llvm
-mtriple=armv7l-linux-gnueabihf''llvm
-mtriple=aarch64-linux-gnu'
可以通过在设备上运行并查询以 ()开头的行)来查询目标(尽管可能仍然是宽松的配置。)gcc
-vTarget:
此外-mtriple,还可以设置别的编译选项,例如:
- -mcpu = <cpuname>
在当前架构中指定要为其生成代码的特定芯片。默认情况下,这是从目标三元组推断出来的,并自动检测到当前体系结构。
- -mattr = a1,+ a2,-a3,...
覆盖或控制目标的特定属性,例如是否启用SIMD操作。默认属性集由当前CPU设置。要获取可用属性的列表,可以执行以下操作:
llc -mtriple=<your device target triple> -mattr=help
这些选项与llc一致。建议设置目标三元组和功能集以包含可用的特定功能,充分利用开发板的功能。可以从《交叉编译的LLVM指南》中找到有关交叉编译属性的更多详细信息 。
通过RPC远程运行CPU内核
展示了如何在远程设备上运行生成的CPU内核。首先,从远程设备获取RPC会话。
if local_demo:
remote = rpc.LocalSession()
else:
# The following is my environment, change this to the IP address of your target device
host = "10.77.1.162"
port = 9090
remote = rpc.connect(host, port)
将库上传到远程设备,然后调用设备本地编译器以重新链接。现在func是一个远程模块对象。
remote.upload(path)
func = remote.load_module("lib.tar")
# create arrays on the remote device
ctx = remote.cpu()
a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), ctx)
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
# the function will run on the remote device
func(a, b)
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
当要评估远程设备上内核的性能时,避免网络开销很重要。 time_evaluator将返回一个远程函数,该函数多次运行该函数,测量该远程设备上的每次运行成本,并返回测得的成本。排除网络开销。
time_f = func.time_evaluator(func.entry_name, ctx, number=10)
cost = time_f(a, b).mean
print("%g secs/op" % cost)
输出:
1.161e-07 secs/op
通过RPC远程运行OpenCL内核
对于远程OpenCL设备,工作流程与上面的工作流程几乎相同。可以定义内核,上传文件并通过RPC运行。
Raspberry Pi不支持OpenCL,以下代码在Firefly-RK3399上进行了测试。可以按照本文 为RK3399设置操作系统和OpenCL驱动程序。
另外,需要在rk3399板上启用OpenCL来构建运行时。在TVM根目录中,执行
cp cmake/config.cmake .
sed -i "s/USE_OPENCL OFF/USE_OPENCL ON/" config.cmake
make runtime -j4
以下函数显示了如何远程运行OpenCL内核
def run_opencl():
# NOTE: This is the setting for my rk3399 board. You need to modify
# them according to your environment.
target_host = "llvm -mtriple=aarch64-linux-gnu"
opencl_device_host = "10.77.1.145"
opencl_device_port = 9090
# create schedule for the above "add one" compute declaration
s = te.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=32)
s[B].bind(xo, te.thread_axis("blockIdx.x"))
s[B].bind(xi, te.thread_axis("threadIdx.x"))
func = tvm.build(s, [A, B], "opencl", target_host=target_host)
remote = rpc.connect(opencl_device_host, opencl_device_port)
# export and upload
path = temp.relpath("lib_cl.tar")
func.export_library(path)
remote.upload(path)
func = remote.load_module("lib_cl.tar")
# run
ctx = remote.cl()
a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), ctx)
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
func(a, b)
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
print("OpenCL test passed!")
概括
本文提供了TVM中的交叉编译和RPC功能的演练。
- 在远程设备上设置RPC服务器。
- 设置目标设备配置以交叉编译本地计算机上的内核。
- 通过RPC API远程上载和运行内核。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)