通过带Flask的REST API在Python中部署PyTorch

通过带Flask的REST API在Python中部署PyTorch

在本文中,将使用Flask来部署PyTorch模型,并用讲解用于模型推断的 REST API。特别是,将部署一个预训练的DenseNet 121模 型来检测图像。

备注: 可在GitHub上获取本文用到的完整代码

这是在生产中部署PyTorch模型的系列教程中的第一篇。到目前为止,以这种方式使用Flask是开始为PyTorch模型提供服务的最简单方法, 但不适用于具有高性能要求的用例。因此: * 如果已经熟悉TorchScript,则可以直接进入的Loading a TorchScript Model in C++教程。 * 如果首先需要复习TorchScript,请查看的Intro a TorchScript教程。

## 1.定义API 将首先定义API端点、请求和响应类型。的API端点将位于/ predict,它接受带有包含图像的file参数的HTTP POST请求。响应 将是包含预测的JSON响应: ```buildoutcfg {"class_id": "n02124075", "class_name": "Egyptian_cat"}

 

## 2.依赖(包)

运行下面的命令来下载需要的依赖:

```buildoutcfg

$ pip install Flask==1.0.3 torchvision-0.3.0

3.简单的Web服务器

以下是一个简单的Web服务器,摘自Flask文档

from flask import Flask

app = Flask(__name__)

 

 

@app.route('/')

def hello():

    return 'Hello World!'

将以上代码段保存在名为app.py的文件中,现在可以通过输入以下内容来运行Flask开发服务器:

$ FLASK_ENV=development FLASK_APP=app.py flask run

当在web浏览器中访问http://localhost:5000/时,会收到文本Hello World的问候!

将对以上代码片段进行一些更改,以使其适合的API定义。首先,将重命名predict方法。将端点路径更新为/predict。 由于图像文件将通过HTTP POST请求发送,因此将对其进行更新,使其也仅接受POST请求:

@app.route('/predict', methods=['POST'])

def predict():

    return 'Hello World!'

还将更改响应类型,以使其返回包含ImageNet类的id和name的JSON响应。更新后的app.py文件现在为:

from flask import Flask, jsonify

app = Flask(__name__)

 

@app.route('/predict', methods=['POST'])

def predict():

    return jsonify({'class_id': 'IMAGE_NET_XXX', 'class_name': 'Cat'})

4.推理

在下一部分中,将重点介绍编写推理代码。这将涉及两部分,第一部分是准备图像,以便可以将其馈送到DenseNet;第二部分,将编 写代码以从模型中获取实际的预测。

4.1 准备图像

DenseNet模型要求图像为尺寸为224 x 224的 3 通道RGB图像。还将使用所需的均值和标准偏差值对图像张量进行归一化。可以点击 这里来了解更多关于它的内容。

将使用来自torchvision库的transforms来建立转换管道,该转换管道可根据需要转换图像。可以在此处 阅读有关转换的更多信息。

import io

 

import torchvision.transforms as transforms

from PIL import Image

 

def transform_image(image_bytes):

    my_transforms = transforms.Compose([transforms.Resize(255),

                                        transforms.CenterCrop(224),

                                        transforms.ToTensor(),

                                        transforms.Normalize(

                                            [0.485, 0.456, 0.406],

                                            [0.229, 0.224, 0.225])])

    image = Image.open(io.BytesIO(image_bytes))

    return my_transforms(image).unsqueeze(0)

上面的方法以字节为单位获取图像数据,应用一系列变换并返回张量。要测试上述方法,请以字节模式读取图像文件(首先将../_static/img/ sample_file.jpeg替换为计算机上文件的实际路径),然后查看是否获得了张量:

with open("../_static/img/sample_file.jpeg", 'rb') as f:

    image_bytes = f.read()

    tensor = transform_image(image_bytes=image_bytes)

    print(tensor)

  • 输出结果:

tensor([[[[ 0.4508,  0.4166,  0.3994,  ..., -1.3473, -1.3302, -1.3473],

          [ 0.5364,  0.4851,  0.4508,  ..., -1.2959, -1.3130, -1.3302],

          [ 0.7077,  0.6392,  0.6049,  ..., -1.2959, -1.3302, -1.3644],

          ...,

          [ 1.3755,  1.3927,  1.4098,  ...,  1.1700,  1.3584,  1.6667],

          [ 1.8893,  1.7694,  1.4440,  ...,  1.2899,  1.4783,  1.5468],

          [ 1.6324,  1.8379,  1.8379,  ...,  1.4783,  1.7352,  1.4612]],

 

         [[ 0.5728,  0.5378,  0.5203,  ..., -1.3704, -1.3529, -1.3529],

          [ 0.6604,  0.6078,  0.5728,  ..., -1.3004, -1.3179, -1.3354],

          [ 0.8529,  0.7654,  0.7304,  ..., -1.3004, -1.3354, -1.3704],

          ...,

          [ 1.4657,  1.4657,  1.4832,  ...,  1.3256,  1.5357,  1.8508],

          [ 2.0084,  1.8683,  1.5182,  ...,  1.4657,  1.6583,  1.7283],

          [ 1.7458,  1.9384,  1.9209,  ...,  1.6583,  1.9209,  1.6408]],

 

         [[ 0.7228,  0.6879,  0.6531,  ..., -1.6476, -1.6302, -1.6476],

          [ 0.8099,  0.7576,  0.7228,  ..., -1.6476, -1.6476, -1.6650],

          [ 1.0017,  0.9145,  0.8797,  ..., -1.6476, -1.6650, -1.6999],

          ...,

          [ 1.6291,  1.6291,  1.6465,  ...,  1.6291,  1.8208,  2.1346],

          [ 2.1868,  2.0300,  1.6814,  ...,  1.7685,  1.9428,  2.0125],

          [ 1.9254,  2.0997,  2.0823,  ...,  1.9428,  2.2043,  1.9080]]]])

4.2 预测

现在将使用预训练的DenseNet 121模型来预测图像的类别。将使用torchvision库中的一个库,加载模型并进行推断。在此示例中, 将使用预训练的模型,但可以对自己的模型使用相同的方法。在这个教程 中了解有关加载模型的更多信息。

from torchvision import models

 

# 确保使用`pretrained`作为`True`来使用预训练的权重:

model = models.densenet121(pretrained=True)

# 由于仅将模型用于推理,因此请切换到“eval”模式:

model.eval()

 

 

def get_prediction(image_bytes):

    tensor = transform_image(image_bytes=image_bytes)

    outputs = model.forward(tensor)

    _, y_hat = outputs.max(1)

    return y_hat

张量y_hat将包含预测的类的id的索引。但是,需要一个易于阅读的类名。为此,需要一个类id来命名映射。将该文件 下载为imagenet_class_index.json并记住它的保存位置(或者,如果按照本文中的确切步骤操作,请将其保存在tutorials/_static中)。 此文件包含ImageNet类的id到ImageNet类的name的映射。将加载此JSON文件并获取预测索引的类的name。

import json

 

imagenet_class_index = json.load(open('../_static/imagenet_class_index.json'))

 

def get_prediction(image_bytes):

    tensor = transform_image(image_bytes=image_bytes)

    outputs = model.forward(tensor)

    _, y_hat = outputs.max(1)

    predicted_idx = str(y_hat.item())

    return imagenet_class_index[predicted_idx]

在使用字典imagenet_class_index之前,首先将张量值转换为字符串值,因为字典imagenet_class_index中的keys是字符串。将 测试上述方法:

with open("../_static/img/sample_file.jpeg", 'rb') as f:

    image_bytes = f.read()

    print(get_prediction(image_bytes=image_bytes))

  • 输出结果:

['n02124075', 'Egyptian_cat']

会得到这样的一个响应:

['n02124075', 'Egyptian_cat']

数组中的第一项是ImageNet类的id,第二项是人类可读的name。

注意:是否注意到模型变量不是get_prediction方法的一部分?或者为什么模型是全局变量?就内存和计算而言,加载模型可能是 一项昂贵的操作。如果将模型加载到get_prediction方法中,则每次调用该方法时都会不必要地加载该模型。由于正在构建Web服务 器,因此每秒可能有成千上万的请求,因此不应该浪费时间为每个推断重复加载模型。因此,仅将模型加载到内存中一次。在生 产系统中,必须有效利用计算以能够大规模处理请求,因此通常应在处理请求之前加载模型。

5.将模型集成到的API服务器中

在最后一部分中,将模型添加到Flask API服务器中。由于的API服务器应该获取图像文件,因此将更新predict方法以从请求中 读取文件:

from flask import request

 

@app.route('/predict', methods=['POST'])

def predict():

    if request.method == 'POST':

        # 从请求中获得文件

        file = request.files['file']

        # 转化为字节

        img_bytes = file.read()

        class_id, class_name = get_prediction(image_bytes=img_bytes)

        return jsonify({'class_id': class_id, 'class_name': class_name})

app.py文件现已完成。以下是完整版本;将路径替换为保存文件的路径,它的运行应是如下:

import io

import json

 

from torchvision import models

import torchvision.transforms as transforms

from PIL import Image

from flask import Flask, jsonify, request

 

 

app = Flask(__name__)

imagenet_class_index = json.load(open('<PATH/TO/.json/FILE>/imagenet_class_index.json'))

model = models.densenet121(pretrained=True)

model.eval()

 

 

def transform_image(image_bytes):

    my_transforms = transforms.Compose([transforms.Resize(255),

                                        transforms.CenterCrop(224),

                                        transforms.ToTensor(),

                                        transforms.Normalize(

                                            [0.485, 0.456, 0.406],

                                            [0.229, 0.224, 0.225])])

    image = Image.open(io.BytesIO(image_bytes))

    return my_transforms(image).unsqueeze(0)

 

 

def get_prediction(image_bytes):

    tensor = transform_image(image_bytes=image_bytes)

    outputs = model.forward(tensor)

    _, y_hat = outputs.max(1)

    predicted_idx = str(y_hat.item())

    return imagenet_class_index[predicted_idx]

 

 

@app.route('/predict', methods=['POST'])

def predict():

    if request.method == 'POST':

        file = request.files['file']

        img_bytes = file.read()

        class_id, class_name = get_prediction(image_bytes=img_bytes)

        return jsonify({'class_id': class_id, 'class_name': class_name})

 

 

if __name__ == '__main__':

    app.run()

让测试一下的web服务器,运行:

$ FLASK_ENV=development FLASK_APP=app.py flask run

可以使用requests库来发送一个POST请求到的app:

import requests

 

resp = requests.post("http://localhost:5000/predict",

                     files={"file": open('<PATH/TO/.jpg/FILE>/cat.jpg','rb')})

打印resp.json()会显示下面的结果:

{"class_id": "n02124075", "class_name": "Egyptian_cat"}

6.下一步工作

编写的服务器非常琐碎,可能无法完成生产应用程序所需的一切。因此,可以采取一些措施来改善它:

  • 端点/predict假定请求中总会有一个图像文件。这可能不适用于所有请求。的用户可能发送带有其它参数的图像,或者根本不发送任何图像。
  • 用户也可以发送非图像类型的文件。由于没有处理错误,因此这将破坏的服务器。添加显式的错误处理路径来引发异常,这将使 能够更好地处理错误的输入
  • 即使模型可以识别大量类别的图像,也可能无法识别所有图像。增强实现以处理模型无法识别图像中的任何情况的情况。
  • 在开发模式下运行Flask服务器,该服务器不适合在生产中进行部署。可以查看教程 以在生产环境中部署Flask服务器。
  • 还可以通过创建一个带有表单的页面来添加UI,该表单可以拍摄图像并显示预测。查看类似项目的演示及其源代码
  • 在本文中,仅展示了如何构建可以一次返回单个图像预测的服务。可以修改服务以能够一次返回多个图像的预测。此外,service-streamer 库自动将对服务的请求排队,并将它们采样到可用于模型的min-batches中。可以查看此教程
  • 最后,鼓励在页面顶部查看链接到的有关部署PyTorch模型的其它教程。

 

posted @ 2021-02-13 08:22  吴建明wujianming  阅读(344)  评论(0编辑  收藏  举报